Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 29 of 29

Full-Text Articles in Engineering

Implementation Of Neuroidentifiers Trained By Pso On A Plc Platform For A Multimachine Power System, Curtis Alan Parrott, Ganesh K. Venayagamoorthy Sep 2008

Implementation Of Neuroidentifiers Trained By Pso On A Plc Platform For A Multimachine Power System, Curtis Alan Parrott, Ganesh K. Venayagamoorthy

Electrical and Computer Engineering Faculty Research & Creative Works

Power systems are nonlinear with fast changing dynamics. In order to design a nonlinear adaptive controller for damping power system oscillations, it becomes necessary to identify the dynamics of the system. This paper demonstrates the implementation of a neural network based system identifier, referred to as a neuroidentifier, on a programmable logic controller (PLC) platform. Two separate neuroidentifiers are trained using the particle swarm optimization (PSO) algorithm to identify the dynamics in a two-area four machine power system, one neuroidentifier for Area 1 and the other for Area 2. The power system is simulated in real time on the Real …


Nsf Career: Scalable Learning And Adaptation With Intelligent Techniques And Neural Networks For Reconfiguration And Survivability Of Complex Systems, Ganesh K. Venayagamoorthy Jul 2008

Nsf Career: Scalable Learning And Adaptation With Intelligent Techniques And Neural Networks For Reconfiguration And Survivability Of Complex Systems, Ganesh K. Venayagamoorthy

Electrical and Computer Engineering Faculty Research & Creative Works

The NSF CAREER program is a premier program that emphasizes the importance the foundation places on the early development of academic careers solely dedicated to stimulating the discovery process in which the excitement of research enriched by inspired teaching and enthusiastic learning. This paper describes the research and education experiences gained by the principal investigator and his research collaborators and students as a result of a NSF CAREER proposal been awarded by the power, control and adaptive networks (PCAN) program of the electrical, communications and cyber systems division, effective June 1, 2004. In addition, suggestions on writing a winning NSF …


Optimal Control Of Class Of Non-Linear Plants Using Artificial Immune Systems: Application Of The Clonal Selection Algorithm, S. A. Panimadai Ramaswamy, Ganesh K. Venayagamoorthy, S. N. Balakrishnan Oct 2007

Optimal Control Of Class Of Non-Linear Plants Using Artificial Immune Systems: Application Of The Clonal Selection Algorithm, S. A. Panimadai Ramaswamy, Ganesh K. Venayagamoorthy, S. N. Balakrishnan

Electrical and Computer Engineering Faculty Research & Creative Works

The function of natural immune system is to protect the living organisms against invaders/pathogens. Artificial Immune System (AIS) is a computational intelligence paradigm inspired by the natural immune system. Diverse engineering problems have been solved in the recent past using AIS. Clonal selection is one of the few algorithms that belong to the family of AIS techniques. Clonal selection algorithm is the computational implementation of the clonal selection principle. The process of affinity maturation of the immune system is explicitly incorporated in this algorithm. This paper presents the application of AIS for the optimal control of a class of non-linear …


Parameter Optimization Of Pss Based On Estimated Hessian Matrix From Trajectory Sensitivities, Jung-Wook Park, Ganesh K. Venayagamoorthy, Seung-Mook Baek Aug 2007

Parameter Optimization Of Pss Based On Estimated Hessian Matrix From Trajectory Sensitivities, Jung-Wook Park, Ganesh K. Venayagamoorthy, Seung-Mook Baek

Electrical and Computer Engineering Faculty Research & Creative Works

This paper describes the optimal tuning for the output limits of the power system stabilizer (PSS), which can improve the system damping performance immediately following a large disturbance. The non-smooth nonlinear parameters such as the saturation limits of the PSS cannot be tuned by the conventional methods based on linear approaches. To implement the systematic optimal tuning for the output limits of the PSS, a feedforward neural network (FFNN) is applied to the hybrid system model based on the differential-algebraic-impulsive-switched (DAIS) structure. The FFNN is firstly designed to identify the trajectory sensitivities obtained from the DAIS structure. Thereafter, it estimates …


Making The Power Grid More Intelligent, Salman Mohagheghi, Ronald G. Harley, Ganesh K. Venayagamoorthy Aug 2007

Making The Power Grid More Intelligent, Salman Mohagheghi, Ronald G. Harley, Ganesh K. Venayagamoorthy

Electrical and Computer Engineering Faculty Research & Creative Works

Summary form only given. This paper focuses on the applications of intelligent techniques for improving the performances of the power system controllers. Intelligent control techniques lay the foundation of the next generation of nonlinear controllers and have the advantage of further improving the controller's performance by incorporating heuristics and expert knowledge into its design. Most of these techniques are independent of any mathematical model of the power system, which proves to be a considerable advantage.


Online Reinforcement Learning-Based Neural Network Controller Design For Affine Nonlinear Discrete-Time Systems, Qinmin Yang, Jagannathan Sarangapani Jul 2007

Online Reinforcement Learning-Based Neural Network Controller Design For Affine Nonlinear Discrete-Time Systems, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a novel reinforcement learning neural network (NN)-based controller, referred to adaptive critic controller, is proposed for general multi-input and multi- output affine unknown nonlinear discrete-time systems in the presence of bounded disturbances. Adaptive critic designs consist of two entities, an action network that produces optimal solution and a critic that evaluates the performance of the action network. The critic is termed adaptive as it adapts itself to output the optimal cost-to-go function and the action network is adapted simultaneously based on the information from the critic. In our online learning method, one NN is designated as the …


Reinforcement Learning Based Output-Feedback Control Of Nonlinear Nonstrict Feedback Discrete-Time Systems With Application To Engines, Peter Shih, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Jul 2007

Reinforcement Learning Based Output-Feedback Control Of Nonlinear Nonstrict Feedback Discrete-Time Systems With Application To Engines, Peter Shih, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The controller includes an observer for estimating states and the outputs, critic, and two action NNs for generating virtual, and actual control inputs. The critic approximates certain strategic utility function and the action NNs are used to minimize both the strategic utility function and their outputs. All NN weights adapt online towards minimization of a performance index, utilizing gradient-descent based rule. …


Near Optimal Output-Feedback Control Of Nonlinear Discrete-Time Systems In Nonstrict Feedback Form With Application To Engines, Peter Shih, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Jan 2007

Near Optimal Output-Feedback Control Of Nonlinear Discrete-Time Systems In Nonstrict Feedback Form With Application To Engines, Peter Shih, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The controller includes an observer for estimating states and the outputs, critic, and two action NNs for generating virtual, and actual control inputs. The critic approximates certain strategic utility function and the action NNs are used to minimize both the strategic utility function and their outputs. All NN weights adapt online towards minimization of a performance index, utilizing gradient-descent based rule. …


Near Optimal Neural Network-Based Output Feedback Control Of Affine Nonlinear Discrete-Time Systems, Qinmin Yang, Jagannathan Sarangapani Jan 2007

Near Optimal Neural Network-Based Output Feedback Control Of Affine Nonlinear Discrete-Time Systems, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a novel online reinforcement learning neural network (NN)-based optimal output feedback controller, referred to as adaptive critic controller, is proposed for affine nonlinear discrete-time systems, to deliver a desired tracking performance. The adaptive critic design consist of three entities, an observer to estimate the system states, an action network that produces optimal control input and a critic that evaluates the performance of the action network. The critic is termed adaptive as it adapts itself to output the optimal cost-to-go function which is based on the standard Bellman equation. By using the Lyapunov approach, the uniformly ultimate boundedness …


Online Reinforcement Learning Neural Network Controller Design For Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani Jan 2007

Online Reinforcement Learning Neural Network Controller Design For Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a novel reinforcement learning neural network (NN)-based controller, referred to adaptive critic controller, is proposed for affine nonlinear discrete-time systems with applications to nanomanipulation. In the online NN reinforcement learning method, one NN is designated as the critic NN, which approximates the long-term cost function by assuming that the states of the nonlinear systems is available for measurement. An action NN is employed to derive an optimal control signal to track a desired system trajectory while minimizing the cost function. Online updating weight tuning schemes for these two NNs are also derived. By using the Lyapunov approach, …


Online Reinforcement Learning Control Of Unknown Nonaffine Nonlinear Discrete Time Systems, Qinmin Yang, Jagannathan Sarangapani Jan 2007

Online Reinforcement Learning Control Of Unknown Nonaffine Nonlinear Discrete Time Systems, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a novel neural network (NN) based online reinforcement learning controller is designed for nonaffine nonlinear discrete-time systems with bounded disturbances. The nonaffine systems are represented by nonlinear auto regressive moving average with exogenous input (NARMAX) model with unknown nonlinear functions. An equivalent affine-like representation for the tracking error dynamics is developed first from the original nonaffine system. Subsequently, a reinforcement learning-based neural network (NN) controller is proposed for the affine-like nonlinear error dynamic system. The control scheme consists of two NNs. One NN is designated as the critic, which approximates a predefined long-term cost function, whereas an …


Reinforcement Learning Based Output-Feedback Controller For Complex Nonlinear Discrete-Time Systems, Peter Shih, Jagannathan Sarangapani Jan 2007

Reinforcement Learning Based Output-Feedback Controller For Complex Nonlinear Discrete-Time Systems, Peter Shih, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex feedback nonlinear discrete-time systems in the presence of bounded and unknown disturbances. This nonlinear discrete-time system consists of a second order system in nonstrict form and an affine nonlinear discrete-time system tightly coupled together. Two adaptive critic NN controllers are designed - primary one for the nonstrict system and the secondary one for the affine system. A Lyapunov function shows the uniformly ultimate boundedness (UUB) of the closed-loop tracking error, weight estimates …


A Fault-Tolerant P-Q Decoupled Control Scheme For Static Synchronous Series Compensator, Wei Qiao, Ganesh K. Venayagamoorthy, Ronald G. Harley Jan 2006

A Fault-Tolerant P-Q Decoupled Control Scheme For Static Synchronous Series Compensator, Wei Qiao, Ganesh K. Venayagamoorthy, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

Control of nonlinear devices in power systems relies on the availability and the quality of sensor measurements. Measurements can be corrupted or interrupted due to sensor failure, broken or bad connections, bad communication, or malfunction of some hardware or software (referred to as missing sensor measurements in this paper). This paper proposes a fault-tolerant control scheme (FTCS) for a static synchronous series compensator (SSSC). This FTCS consists of a sensor evaluation and (missing sensor) restoration scheme (SERS) cascaded with a P-Q decoupled control scheme (PQDC). It is able to provide effective control to the SSSC when single or multiple crucial …


Neural Network-Based Output Feedback Controller For Lean Operation Of Spark Ignition Engines, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier, Jonathan B. Vance, Pingan He Jan 2006

Neural Network-Based Output Feedback Controller For Lean Operation Of Spark Ignition Engines, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier, Jonathan B. Vance, Pingan He

Electrical and Computer Engineering Faculty Research & Creative Works

Spark ignition (SI) engines running at very lean conditions demonstrate significant nonlinear behavior by exhibiting cycle-to-cycle dispersion of heat release even though such operation can significantly reduce NOx emissions and improve fuel efficiency by as much as 5-10%. A suite of neural network (NN) controller without and with reinforcement learning employing output feedback has shown ability to reduce the nonlinear cyclic dispersion observed under lean operating conditions. The neural network controllers consists of three NN: a) A NN observer to estimate the states of the engine such as total fuel and air; b) a second NN for generating virtual input; …


A Neural Network Based Wide Area Monitor For A Power System, Xiaomeng Li, Ganesh K. Venayagamoorthy Jan 2005

A Neural Network Based Wide Area Monitor For A Power System, Xiaomeng Li, Ganesh K. Venayagamoorthy

Electrical and Computer Engineering Faculty Research & Creative Works

With the deregulation of power industry, many tie lines between control areas are driven to operate near their maximum capacity, especially those serving heavy load centers. Wide area controllers (WACs) using wide-area or global signals can provide remote auxiliary control signals to local controllers such as automatic voltage regulators, power system stabilizers, etc to damp out inter-area oscillations. The power system is highly nonlinear system with fast changing dynamics. In order to have an efficient WAC, an online system monitor/predictor is required to provide inter-area information to the WAC from time to time. This paper presents the design of an …


A Neural Network Based Optimal Wide Area Control Scheme For A Power System, Ganesh K. Venayagamoorthy, Swakshar Ray Jan 2005

A Neural Network Based Optimal Wide Area Control Scheme For A Power System, Ganesh K. Venayagamoorthy, Swakshar Ray

Electrical and Computer Engineering Faculty Research & Creative Works

With deregulation of the power industry, many tie lines between control areas are driven to operate near their maximum capacity, especially those serving heavy load centers. Wide area control systems (WACSs) using wide-area or global signals can provide remote auxiliary control signals to local controllers such as automatic voltage regulators, power system stabilizers, etc to damp out inter-area oscillations. This paper presents the design and the DSP implementation of a nonlinear optimal wide area controller based on adaptive critic designs and neural networks for a power system on the real-time digital simulator (RTDS©). The performance of the WACS as a …


Neural Network Stabilizing Control Of Single Machine Power System With Control Limits, Wenxin Liu, Jagannathan Sarangapani, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Mariesa Crow Jul 2004

Neural Network Stabilizing Control Of Single Machine Power System With Control Limits, Wenxin Liu, Jagannathan Sarangapani, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Mariesa Crow

Electrical and Computer Engineering Faculty Research & Creative Works

Power system stabilizers are widely used to generate supplementary control signals for the excitation system in order to damp out the low frequency oscillations. This paper proposes a stable neural network (NN) controller for the stabilization of a single machine infinite bus power system. In the power system control literature, simplified analytical models are used to represent the power system and the controller designs are not based on rigorous stability analysis. This work overcomes the two major problems by using an accurate analytical model for controller development and presents the closed-loop stability analysis. The NN is used to approximate the …


New External Neuro-Controller For Series Capacitive Reactance Compensator In A Power Network, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley Jan 2004

New External Neuro-Controller For Series Capacitive Reactance Compensator In A Power Network, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

The controllable capacitive reactance can be used as the input variable for the external controller of a series capacitive reactance compensator (SCRC) to improve the damping of low-frequency oscillations of the rotor angle and active power in a power system. Conventional linear PI controllers are tuned for best performance at one specific operating point of the nonlinear power system. At other operating point its performance degrades. Nonlinear optimal neuro-controllers are able to overcome this degradation. In this paper, the dual heuristic dynamic programming (DHP) optimization algorithm is applied to design an external nonlinear optimal neuro-controller for the SCRC. Simulation studies …


A Novel Dual Heuristic Programming Based Optimal Control Of A Series Compensator In The Electric Power Transmission System, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley Jan 2003

A Novel Dual Heuristic Programming Based Optimal Control Of A Series Compensator In The Electric Power Transmission System, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, the dual heuristic programming (DHP) optimization algorithm is used for the design of a nonlinear optimal neurocontroller that replaces the proportional-integral (PI) based conventional linear controller (CONVC) in the internal control of a power electronic converter based series compensator in the electric power transmission system. The performance of the proposed DHP based neurocontroller is compared with that of the CONVC with respect to damping low frequency oscillations. Simulation results using the PSCAD/EMTDC software package are presented.


Adaptive Critic Design Based Neurocontroller For A Statcom Connected To A Power System, Salman Mohagheghi, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley Jan 2003

Adaptive Critic Design Based Neurocontroller For A Statcom Connected To A Power System, Salman Mohagheghi, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

A novel nonlinear optimal neurocontroller for a static compensator (STATCOM) connected to a power system using artificial neural networks is presented in this paper. The heuristic dynamic programming (HDP), a member of the adaptive critic designs (ACDs) family, is used for the design of the STATCOM neurocontroller. This neurocontroller provides nonlinear optimal control with better performance compared to the conventional PI controllers.


An Industrial Food Processing Plant Automation Using A Hybrid Of Pi And Fuzzy Logic Control, Ganesh K. Venayagamoorthy, D. Naidoo, P. Govender Jan 2003

An Industrial Food Processing Plant Automation Using A Hybrid Of Pi And Fuzzy Logic Control, Ganesh K. Venayagamoorthy, D. Naidoo, P. Govender

Electrical and Computer Engineering Faculty Research & Creative Works

An industrial food processing plant consisting of nonlinear dynamics requires pressure and temperature controllers to be nonlinear. In this paper, nonlinear controllers are designed using fuzzy logic to augment the conventional pressure and temperature PI controllers for an industrial food processing plant. Simulation results are presented to show improvement in the plant response with the hybrid controllers.


A Heuristic Dynamic Programming Based Power System Stabilizer For A Turbogenerator In A Single Machine Power System, Wenxin Liu, Ganesh K. Venayagamoorthy, Donald C. Wunsch Jan 2003

A Heuristic Dynamic Programming Based Power System Stabilizer For A Turbogenerator In A Single Machine Power System, Wenxin Liu, Ganesh K. Venayagamoorthy, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp the low frequency power system oscillations. To overcome the drawbacks of conventional PSS (CPSS), numerous techniques have been proposed in the literature. Based on the analysis of existing techniques, a novel design of power system stabilizer (PSS) based on heuristic dynamic programming (HDP) is proposed in this paper. HDP combining the concepts of dynamic programming and reinforcement learning is used in the design of a nonlinear optimal power system stabilizer. The proposed HDP based PSS is evaluated against the conventional power …


An Extended Kalman Filter (Ekf) Approach On Fuzzy System Optimization Problem, Nian Zhang, Donald C. Wunsch Jan 2003

An Extended Kalman Filter (Ekf) Approach On Fuzzy System Optimization Problem, Nian Zhang, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

Optimizing the membership functions of a fuzzy system can be viewed as a system identification problem for a nonlinear dynamic system. Basically, we can view the optimization of fuzzy membership functions as a weighted least-squares minimization problem, where the error vector is the difference between the fuzzy system outputs and the target values for those outputs. The extended Kalman filter algorithm is a good choice to solve this system identification problem, not only because it is a derivative-based algorithm that is suitable to solve the weighted least-squares minimization problem, but also because of its appealing predictor-corrector feature for nonlinear system …


Dual Heuristic Programming Excitation Neurocontrol For Generators In A Multimachine Power System, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley Jan 2003

Dual Heuristic Programming Excitation Neurocontrol For Generators In A Multimachine Power System, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

The design of nonlinear optimal neurocontrollers that replace the conventional automatic voltage regulators for excitation control of turbogenerators in a multimachine power system is presented in this paper. The neurocontroller design is based on dual heuristic programming (DHP), a powerful adaptive critic technique. The feedback variables are completely based on local measurements from the generators. Simulations on a three-machine power system demonstrate that DHP-based neurocontrol is much more effective than the conventional proportional-integral-derivative control for improving dynamic performance and stability of the power grid under small and large disturbances. This paper also shows how to design optimal multiple neurocontrollers for …


Adaptive Critic-Based Neural Network Controller For Uncertain Nonlinear Systems With Unknown Deadzones, Pingan He, Jagannathan Sarangapani, S. N. Balakrishnan Jan 2002

Adaptive Critic-Based Neural Network Controller For Uncertain Nonlinear Systems With Unknown Deadzones, Pingan He, Jagannathan Sarangapani, S. N. Balakrishnan

Electrical and Computer Engineering Faculty Research & Creative Works

A multilayer neural network (NN) controller in discrete-time is designed to deliver a desired tracking performance for a class of nonlinear systems with input deadzones. This multilayer NN controller has an adaptive critic NN architecture with two NNs for compensating the deadzone nonlinearity and a third NN for approximating the dynamics of the nonlinear system. A reinforcement learning scheme in discrete-time is proposed for the adaptive critic NN deadzone compensator, where the learning is performed based on a certain performance measure, which is supplied from a critic. The adaptive generating NN rejects the errors induced by the deadzone whereas a …


A Nonlinear Voltage Controller With Derivative Adaptive Critics For Multimachine Power Systems, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley Jan 2001

A Nonlinear Voltage Controller With Derivative Adaptive Critics For Multimachine Power Systems, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

Based on derivative adaptive critics, a novel nonlinear optimal voltage/excitation control for a multimachine power system is presented. The feedback variables are completely based on local measurements. Simulations on a three-machine system demonstrate that the nonlinear controller is much more effective than the conventional PID controller equipped with a power system stabilizer for improving dynamic performance and stability under small and large disturbances.


Neurocontroller Alternatives For "Fuzzy" Ball-And-Beam Systems With Nonuniform Nonlinear Friction, Danil V. Prokhorov, Donald C. Wunsch, Paul H. Eaton Jan 2000

Neurocontroller Alternatives For "Fuzzy" Ball-And-Beam Systems With Nonuniform Nonlinear Friction, Danil V. Prokhorov, Donald C. Wunsch, Paul H. Eaton

Electrical and Computer Engineering Faculty Research & Creative Works

The ball-and-beam problem is a benchmark for testing control algorithms. Zadeh proposed (1994) a twist to the problem, which, he suggested, would require a fuzzy logic controller. This experiment uses a beam, partially covered with a sticky substance, increasing the difficulty of predicting the ball's motion. We complicated this problem even more by not using any information concerning the ball's velocity. Although it is common to use the first differences of the ball's consecutive positions as a measure of velocity and explicit input to the controller, we preferred to exploit recurrent neural networks, inputting only consecutive positions instead. We have …


Adaptive Critic Based Neurocontroller For Turbogenerators With Global Dual Heuristic Programming, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley Jan 2000

Adaptive Critic Based Neurocontroller For Turbogenerators With Global Dual Heuristic Programming, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

Turbogenerators are nonlinear time varying systems. This paper presents the design of a neurocontroller for such a turbogenerator that augments/replaces the traditional automatic voltage regulator (AVR) and the turbine governor using a novel technique based on the adaptive critic designs (ACDs) with emphasis on global dual heuristic programming (GDHP). Simulation results are presented to show that the neurocontroller derived with the GDHP approach is robust and its performance is better when compared with that derived with other neural network technique, especially when system conditions and configuration changes.


Dc Link Stabilized Field Oriented Control Of Electric Propulsion Systems, Keith Corzine, S. D. Sudhoff, Steven F. Glover, H. J. Hegner, H. N. Robey Jan 1998

Dc Link Stabilized Field Oriented Control Of Electric Propulsion Systems, Keith Corzine, S. D. Sudhoff, Steven F. Glover, H. J. Hegner, H. N. Robey

Electrical and Computer Engineering Faculty Research & Creative Works

Induction motor based electric propulsion systems can be used in a wide variety of applications including locomotives, hybrid electric vehicles, and ships. Field oriented control of these drives is attractive since it allows the torque to be tightly and nearly instantaneously controlled. However, such systems can be prone to negative impedance instability of the DC link. This paper examines this type of instability and sets forth a readily implemented albeit nonlinear control strategy to mitigate this potential problem.