Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Faculty Research & Creative Works

Capacitors

Articles 1 - 30 of 41

Full-Text Articles in Engineering

A Novel Physics-Assisted Genetic Algorithm For Decoupling Capacitor Optimization, Li Jiang, Ling Zhang, Shurun Tan, Da Li, Chulsoon Hwang, Jun Fan, Er Ping Li Jan 2024

A Novel Physics-Assisted Genetic Algorithm For Decoupling Capacitor Optimization, Li Jiang, Ling Zhang, Shurun Tan, Da Li, Chulsoon Hwang, Jun Fan, Er Ping Li

Electrical and Computer Engineering Faculty Research & Creative Works

This article proposes a new physics-assisted genetic algorithm (PAGA) for decoupling capacitor (decap) optimization in power distribution networks (PDNs), which is a highly efficient approach to minimizing the number of decaps within an enormous search space. In the proposed PAGA method, the priority of the decap ports is first determined based on their physical loop inductances. Then, an initial solution is quickly obtained by placing decaps sequentially on the port with the highest priority. Subsequently, a GA with prior physical knowledge is developed to find better decap solutions progressively. A port removal scheme that eliminates the low-priority ports and a …


Dynamic Response Improvement In A Buck Type Converter Using Capacitor Current Feed-Forward Control, Lisheng Shi, Mehdi Ferdowsi, Mariesa Crow Nov 2010

Dynamic Response Improvement In A Buck Type Converter Using Capacitor Current Feed-Forward Control, Lisheng Shi, Mehdi Ferdowsi, Mariesa Crow

Electrical and Computer Engineering Faculty Research & Creative Works

The dynamic performance of dc-dc power electronic converters is mainly determined by the output filtering capacitor and inductor, control loop(s) compensator(s), and the voltage conversion ratio. Normally, a larger capacitance and/or a smaller inductance are not recommended because of the extra cost and size of the capacitor and/or the increment of the inductor current ripple. The capacitor current feed-forward method has gained popularity due its fast dynamic response, simpler structure, and less sensing losses. In applications where a large voltage conversion ratio is needed, dynamic response for a load step-down scenario is worse than that of a load step-up condition. …


A System Design Approach For Unattended Solar Energy Harvesting Supply, Jonathan W. Kimball, Brian T. Kuhn, Robert S. Balog Apr 2009

A System Design Approach For Unattended Solar Energy Harvesting Supply, Jonathan W. Kimball, Brian T. Kuhn, Robert S. Balog

Electrical and Computer Engineering Faculty Research & Creative Works

Remote devices, such as sensors and communications devices, require continuously available power. In many applications, conventional approaches are too expensive, too large, or unreliable. For short-term needs, primary batteries may be used. However, they do not scale up well for long-term installations. Instead, energy harvesting methods must be used. Here, a system design approach is introduced that results in a highly reliable, highly available energy harvesting device for remote applications. First, a simulation method that uses climate data and target availability produces Pareto curves for energy storage and generation. This step determines the energy storage requirement in watt-hours and the …


Prediction Of Effective Permittivity Of Diphasic Dielectrics Using An Equivalent Capacitance Model, Sandeep K. Patil, Marina Koledintseva, Robert W. Schwartz, Wayne Huebner Oct 2008

Prediction Of Effective Permittivity Of Diphasic Dielectrics Using An Equivalent Capacitance Model, Sandeep K. Patil, Marina Koledintseva, Robert W. Schwartz, Wayne Huebner

Electrical and Computer Engineering Faculty Research & Creative Works

An analytical model based on an equivalent capacitance circuit for expressing a static effective permittivity of a composite dielectric with complex-shaped inclusions is presented. The dielectric constant of 0-3 composites is investigated using this model. The geometry of the capacitor containing a composite dielectric is discretized into partial parallel-plate capacitor elements, and the effective permittivity of the composite is obtained from the equivalent capacitance of the structure. First, an individual cell diphasic dielectric (a high-permittivity spherical inclusion enclosed in a lower permittivity parallelepiped) is considered. The capacitance of this cell is modeled as a function of an inclusion radius/volume fraction. …


Parametric Study Of Alternative Ev1 Powertrains, Adam Saplin, Andrew Meintz, Mehdi Ferdowsi Sep 2008

Parametric Study Of Alternative Ev1 Powertrains, Adam Saplin, Andrew Meintz, Mehdi Ferdowsi

Electrical and Computer Engineering Faculty Research & Creative Works

The General Motors (GM) EV1 is an electric vehicle originally powered by either a PbA or NiMh battery pack. This paper examines the possibility of alternative powertrain configurations. These alternatives include an ultracapacitor (UC) storage system, fuel cell system with UC storage, and a fuel cell system with a NiMh battery pack. The configurations were simulated using ADVISOR. Parametric tests were performed by varying the size of the energy storage systems. The study of these combinations is followed by an examination of the current art of the hybrid energy storage topologies used to combine battery and ultracapacitor storage. These topologies …


An Improved Cascaded H-Bridge Multilevel Inverter Controlled By An Unbalanced Voltage Level Sigma-Delta Modulator, Jingsheng Liao, Mehdi Ferdowsi Sep 2008

An Improved Cascaded H-Bridge Multilevel Inverter Controlled By An Unbalanced Voltage Level Sigma-Delta Modulator, Jingsheng Liao, Mehdi Ferdowsi

Electrical and Computer Engineering Faculty Research & Creative Works

Multilevel inverters have been proven to be viable solutions for high-power automotive motor drive applications due to their high volt-ampere ratings. Cascaded H-bridge inverters are a promising breed of multilevel inverters which generally require several independent dc sources. Replacement of all but one of the dc sources with capacitors in cascaded H-bridge multilevel inverters, which leads to single-dc-source per-phase cascaded inverters, has recently gained popularity. However, very few efforts have been made to address the challenging problem of voltage regulation in the replacing capacitors. In this paper, applicability of a real-time voltage control technique named unbalanced voltage level sigma-delta modulation …


A Unique Ultracapacitor Direct Integration Scheme In Multilevel Motor Drives For Large Vehicle Propulsion, Shuai Lu, Keith Corzine, Mehdi Ferdowsi Jul 2007

A Unique Ultracapacitor Direct Integration Scheme In Multilevel Motor Drives For Large Vehicle Propulsion, Shuai Lu, Keith Corzine, Mehdi Ferdowsi

Electrical and Computer Engineering Faculty Research & Creative Works

This paper introduces a new set of methods to directly integrate ultracapacitor banks into cascaded multilevel inverters that are used for large vehicle propulsion. The idea is to replace the regular dc-link capacitors with ultracapacitors in order to combine the energy storage unit and motor drive. This approach eliminates the need for an interfacing dc-dc converter and considerably improves the efficiency of regenerative braking energy restoration in large vehicles using multilevel converters. Utilizing the proposed modulation control set, the two cascaded inverters can have their dc voltage levels maintained at any ratio (even a noninteger ratio) or dynamically varied over …


An Unique Ultracapacitor Direct Integration Scheme In Multilevel Motor Drives For Large Vehicle Propulsion, Shuai Lu, Keith Corzine, Mehdi Ferdowsi Oct 2006

An Unique Ultracapacitor Direct Integration Scheme In Multilevel Motor Drives For Large Vehicle Propulsion, Shuai Lu, Keith Corzine, Mehdi Ferdowsi

Electrical and Computer Engineering Faculty Research & Creative Works

This paper introduces a new set of methods to directly integrate ultracapacitor banks into cascaded multilevel inverters used for large vehicle propulsion. The idea is to replace the regular dc-link capacitors with ultracapacitors in order to combine the energy storage unit and motor drive. This approach eliminates the need for an interfacing dc-dc converter and considerably improves the efficiency of regenerative braking energy restoration in electric and hybrid vehicles. Utilizing the proposed modulation control set, the two cascaded inverters can have their dc voltage levels maintained at any ratio (even a noninteger ratio) or dynamically varied over a wide range …


Analysis Of The Double-Tiered Three-Battery Switched Capacitor Battery Balancing System, Andrew Baughman, Mehdi Ferdowsi Sep 2006

Analysis Of The Double-Tiered Three-Battery Switched Capacitor Battery Balancing System, Andrew Baughman, Mehdi Ferdowsi

Electrical and Computer Engineering Faculty Research & Creative Works

The auto industry is progressing towards hybrid and fully electric vehicles in their future car models. These vehicles need a power plant that is reliable during the lifetime of the car. Battery and ultra-capacitor capacity imbalances stemming from manufacturing and ensuing driving environment and operational usage affect voltage levels, which must adhere to strict limits to ensure the safety of the driver. A double-tiered capacitive shuttling technique is applied to an idealized three-battery system simulation in order to balance the voltages. Parameters in the system are varied and their effects on the system determined. Results are compared to a single-tiered …


Characterizing Package/Pcb Pdn Interactions From A Full-Wave Finite-Difference Formulation, Shishuang Sun, David Pommerenke, James L. Drewniak, Kai Xiao, Sin-Ting Chen, Tzong-Lin Wu Aug 2006

Characterizing Package/Pcb Pdn Interactions From A Full-Wave Finite-Difference Formulation, Shishuang Sun, David Pommerenke, James L. Drewniak, Kai Xiao, Sin-Ting Chen, Tzong-Lin Wu

Electrical and Computer Engineering Faculty Research & Creative Works

A novel approach of equivalent circuit model extraction is developed for modeling of integrated package and PCB power distribution networks (PDN). The integrated PDNs are formulated from a full-wave finite-difference algorithm, and the resulting matrix equations are converted to equivalent circuits. The equivalent circuits, as well as the decoupling capacitors and the attached circuit components, can be analyzed with a SPICE-like solver in both the time and frequency domains. The modeling of dielectric loss is also addressed. The method is used to model three PDN problems including a simple power bus, a BGA package mounting on a PCB, and a …


Non-Unity Active Pfc Methods For Filter Size Optimization, Yongxiang Chen, Jonathan W. Kimball, Philip T. Krein Mar 2006

Non-Unity Active Pfc Methods For Filter Size Optimization, Yongxiang Chen, Jonathan W. Kimball, Philip T. Krein

Electrical and Computer Engineering Faculty Research & Creative Works

Active power factor correction seeks to obtain unity power factor and sinusoidal line currents. Optimized nonsinusoidal line currents reduce filter capacitor requirements with a nonunity target power factor. Implementation methods are presented that permit reduced power factor to be traded off against filter size in a nearly optimum manner. A simple waveform shape can reduce filter component size by about 40% in active PFC converters at the same level of complexity as in conventional PFC designs while yielding power factor as high as 0.9. Two approximate methods to generate appropriate shapes are presented. They offer direct practical implementation of nonunity …


Modeling Of Capacitor Impedance In Switching Converters, Jonathan W. Kimball, Philip T. Krein, Kevin R. Cahill Dec 2005

Modeling Of Capacitor Impedance In Switching Converters, Jonathan W. Kimball, Philip T. Krein, Kevin R. Cahill

Electrical and Computer Engineering Faculty Research & Creative Works

Switched capacitor (SC) converters are gaining acceptance as alternatives to traditional, inductor-based switching power converters. Proper design of SC converters requires an understanding of all loss sources and their impacts on circuit operation. In the present work, an equivalent resistance method is developed for analysis, and equivalent resistance formulae are presented for various modes of operation. Quasiresonant converters are explored and compared to standard SC converters. Comparisons to inductor-based switching power converters are made. A number of capacitor technologies are evaluated and compared for applications to both SC converters and inductor-based converters. The resulting model can be used to accurately …


Analysis And Design Of Switched Capacitor Converters, Jonathan W. Kimball, Philip T. Krein Mar 2005

Analysis And Design Of Switched Capacitor Converters, Jonathan W. Kimball, Philip T. Krein

Electrical and Computer Engineering Faculty Research & Creative Works

Switched capacitor converters have become more common in recent years. Crucial to understanding the maximum power throughput and efficiency is a model of the converter's equivalent resistance. A new form for equivalent resistance is derived and discussed in a design context. Quasi-resonant operation is also explored and compared to non-resonant operation. Several capacitor technologies are evaluated and compared.


Double-Tiered Capacitive Shuttling Method For Balancing Series-Connected Batteries, Andrew Baughman, Mehdi Ferdowsi Jan 2005

Double-Tiered Capacitive Shuttling Method For Balancing Series-Connected Batteries, Andrew Baughman, Mehdi Ferdowsi

Electrical and Computer Engineering Faculty Research & Creative Works

The auto industry is progressing towards hybrid and fully electric vehicles in their future car models. These vehicles need a power plant that is reliable during the lifetime of the car. Battery capacity imbalances stemming from the cell manufacturer, ensuing driving environment, and operational usage affect voltage levels, which must follow adherence to strict limits to ensure the safety of the driver. A variation on an existing method of using a capacitor to shuttle charge from one battery to another to balance series strings of batteries is proposed in this paper. The advancement shown in this paper is to bridge …


Analysis Of A Low-Pass Filter Employing A 4-Pin Capacitor, A. Ritter, Todd H. Hubing, Thomas Van Doren, Theodore M. Zeeff Jan 2005

Analysis Of A Low-Pass Filter Employing A 4-Pin Capacitor, A. Ritter, Todd H. Hubing, Thomas Van Doren, Theodore M. Zeeff

Electrical and Computer Engineering Faculty Research & Creative Works

Capacitors with two or three leads tend to make poor low-pass filters at high frequencies (e.g. greater than 100 MHz) due to the mutual inductance between the input and output sides of the filter. This work proposes a four-lead low-pass filter capacitor design that minimizes the magnetic flux coupling between the input and output. Measurements of a prototype capacitor confirm that it performs significantly better than a typical two-lead capacitor at high frequencies.


Low-Input-Voltage, Low-Power Boost Converter Design Issues, Jonathan W. Kimball, Theresa L. Flowers, Patrick L. Chapman Sep 2004

Low-Input-Voltage, Low-Power Boost Converter Design Issues, Jonathan W. Kimball, Theresa L. Flowers, Patrick L. Chapman

Electrical and Computer Engineering Faculty Research & Creative Works

Issues associated with boost converter design and performance are investigated when a low input voltage is used. Low-input-voltage sources include single fuel cells, single solar cells, and thermoelectric devices. The primary context is interfacing single micro fuel cells to portable electronic loads, such as mobile phones. Efficiency and circuit startup are the two most difficult issues for a low-cost design. It is shown in theory and experiment that the boost converter has a voltage collapse point. A simple startup technique is proposed that is appropriate for some applications.


A Time Domain Approach To Estimate Current Draw From Smt Decoupling Capacitors, Lin Zhang, Bruce Archambeault, Samuel Conner, James L. Knighten, Jun Fan, Norman W. Smith, Ray Alexander, Richard E. Dubroff, James L. Drewniak Aug 2004

A Time Domain Approach To Estimate Current Draw From Smt Decoupling Capacitors, Lin Zhang, Bruce Archambeault, Samuel Conner, James L. Knighten, Jun Fan, Norman W. Smith, Ray Alexander, Richard E. Dubroff, James L. Drewniak

Electrical and Computer Engineering Faculty Research & Creative Works

A time domain approach to investigate and predict impedances and scattering parameters of a DC power bus is proposed. This approach is based on a cavity model and is achieved using a circuit simulation tool - SPICE. A SPICE-based circuit model for triangular power plane segments is described, verified and applied to simulate both the frequency and time domain characteristics of an irregularly shaped two-layer PCB board. Furthermore, the current draw from a surface mount technology (SMT) decoupling capacitor is simulated and estimated using this approach. Near-field electromagnetic loop probes are used to validate the current estimation qualitatively. Additionally the …


Series-Parallel Approaches And Clamp Methods For Extreme Dynamic Response With Advanced Digital Loads, Philip T. Krein, Jonathan W. Kimball Aug 2004

Series-Parallel Approaches And Clamp Methods For Extreme Dynamic Response With Advanced Digital Loads, Philip T. Krein, Jonathan W. Kimball

Electrical and Computer Engineering Faculty Research & Creative Works

The series-input parallel-output dc-dc converter combination provides inherent sharing among the converters. With conventional controls, however, this sharing is unstable. Recent literature work proposes complicated feedback loops to correct the problem, at the cost of dynamic performance. This paper shows that a simple sensorless current mode control stabilizes sharing with fast dynamics suitable for advanced digital loads. With this control in place, a "super-matched" current sharing control emerges. Sharing occurs through transients, limited only by the energy limits of the converters. The control approach has considerable promise for high-performance voltage regulator modules. For even faster response, clamping techniques are proposed.


Pulse Regulation Control Technique For Bifred Converter, Mehdi Ferdowsi, Ali Emadi, Mark Telefus, Curtis Davis Jun 2004

Pulse Regulation Control Technique For Bifred Converter, Mehdi Ferdowsi, Ali Emadi, Mark Telefus, Curtis Davis

Electrical and Computer Engineering Faculty Research & Creative Works

Pulse Regulation control scheme is presented and applied to BIFRED converter operating in discontinuous conduction mode (DCM). In contrast to the conventional control techniques, the principal idea of Pulse Regulation is to regulate the output voltage using a series of high and low power pulses generated by the current of the input inductor. In this paper, analysis of BIFRED converter operating in DCM is presented. The basic idea of Pulse Regulation as well as the estimation of the output voltage ripple is introduced. Experimental results on a prototype converter are also demonstrated.


Issues With Low-Input-Voltage Boost Converter Design, Jonathan W. Kimball, Theresa L. Flowers, Patrick L. Chapman Jun 2004

Issues With Low-Input-Voltage Boost Converter Design, Jonathan W. Kimball, Theresa L. Flowers, Patrick L. Chapman

Electrical and Computer Engineering Faculty Research & Creative Works

This paper addresses boost converter circuits that are built for very low input voltages, i.e. less than 1 V. Such circuits can be useful for single-cell solar and fuel cell power supplies. Important issues are physical size, high conversion ratio, efficiency, and startup. Several experimental studies show the impact of these issues. A startup technique is proposed that works for arbitrarily low input voltages.


Boost Integrated Push-Pull Rectifier With Power Factor Correction And Output Voltage Regulation Using A New Digital Control Technique, Zhong Nie, Mehdi Ferdowsi, Ali Emadi Jan 2004

Boost Integrated Push-Pull Rectifier With Power Factor Correction And Output Voltage Regulation Using A New Digital Control Technique, Zhong Nie, Mehdi Ferdowsi, Ali Emadi

Electrical and Computer Engineering Faculty Research & Creative Works

An integrated converter is a synthesized converter based on the overall system integration, which is simplified by the system objective and can implement the system functions similar to the discrete converters. An integrated converter consists of converter sets; each converter set has a special function defined by the designer. A family of DC/DC Boost based integrated rectifiers with two active switches can be derived by the integration concept. In this paper, Boost + Push-Pull integrated converter is introduced and derived. To regulate the output voltage and shape the input current, a new simple digital control method is applied. In contrast …


A Unique Fault-Tolerant Design For Flying Capacitor Multilevel Inverter, Xiaomin Kou, Keith Corzine, Yakov L. Familiant Jan 2004

A Unique Fault-Tolerant Design For Flying Capacitor Multilevel Inverter, Xiaomin Kou, Keith Corzine, Yakov L. Familiant

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a unique design for flying capacitor type multilevel inverters with fault-tolerant features. When a single-switch fault per phase occurs, the new design can still provide the same number of converting levels by shorting the fault power semiconductors and reconfiguring the gate controls. The most attractive point of the proposed design is that it can undertake the single-switch fault per phase without sacrificing power converting quality. Future more, if multiple faults occur in different phases and each phase have only one fault switch, the proposed design can still conditionally provide consistent voltage converting levels. This paper will also …


A Four-Level Crossing Dc/Dc Converter Based Drive System, X. Kou, Keith Corzine Nov 2003

A Four-Level Crossing Dc/Dc Converter Based Drive System, X. Kou, Keith Corzine

Electrical and Computer Engineering Faculty Research & Creative Works

This paper introduces a novel crossing front-end dc/dc converter for a four-level drive system which provides a voltage boost as well as dc capacitor bank voltage regulation. The primary advantage of the proposed converter is that it simplifies the control of the four-level diode-clamped inverter since capacitor voltage balancing is not required by the inverter control. Furthermore, the inverter modulation index can be varied up to its physical limitation. An average-value model of the converter is derived and used for insight and analysis of the converter operation. Detailed simulations of the four-level drive system demonstrate the effectiveness of the proposed …


A Unique Fault-Tolerant Design For Flying Capacitor Multilevel Inverters, X. Kou, Keith Corzine, Yakov L. Familiant Jan 2003

A Unique Fault-Tolerant Design For Flying Capacitor Multilevel Inverters, X. Kou, Keith Corzine, Yakov L. Familiant

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a unique design for flying capacitor type multilevel inverters with fault-tolerant features. When a single-switch fault per phase occurs, the new design can still provide the same number of converting levels by shorting the fault power semiconductors and reconfiguring the gate controls. The most attractive point of the proposed design is that it can undertake the single-switch fault per phase without scarifying power converting quality. This paper also discusses the capacitor balancing approach under fault-conditions, which is an essential part of controlling flying capacitor type multilevel inverters. Suggested fault diagnosing methods are also discussed in this paper. …


Capacitor Voltage Balancing In Full Binary Combination Schema Flying Capacitor Multilevel Inverters, Keith Corzine, X. Kou Jan 2003

Capacitor Voltage Balancing In Full Binary Combination Schema Flying Capacitor Multilevel Inverters, Keith Corzine, X. Kou

Electrical and Computer Engineering Faculty Research & Creative Works

Recently, the full binary combination schema (FBCS) method has been introduced to control the flying capacitor multilevel inverter. This method has the primary advantage that the number of voltage levels can be increased for a given number of semiconductor devices when compared to the conventional control methods. However, due to the difficulty of balancing the capacitors, the new schema requires fixed floating sources to provide the DC voltages. This paper reveals an approach of balancing the capacitors, thus expanding the application fields of FBCS inverters to the family of the flying capacitor multilevel inverters under the condition of choosing a …


Over-Distention Operation Of Cascaded Multilevel Inverters, X. Kou, Keith Corzine, M. W. Wielebski Jan 2003

Over-Distention Operation Of Cascaded Multilevel Inverters, X. Kou, Keith Corzine, M. W. Wielebski

Electrical and Computer Engineering Faculty Research & Creative Works

Established research has shown that cascaded multilevel inverters can provide more voltage vectors per number of active semiconductors compared to typical multilevel converters. This feature is significant for increasing the drive performance as well as reducing the drive complexity and losses. When two inverters are cascaded, the maximum number of effective levels (or maximal distention operation) is the product of the number of levels of the individual inverters. It is possible to operate the cascaded inverter beyond maximum distention. The over-distention operation is desirable since it effectively increases the number of voltage levels in spite of some missing switching levels. …


Analysis Of Simple Two-Capacitor Low-Pass Filters, Todd H. Hubing, David Pommerenke, Theodore M. Zeeff, Thomas Van Doren Jan 2003

Analysis Of Simple Two-Capacitor Low-Pass Filters, Todd H. Hubing, David Pommerenke, Theodore M. Zeeff, Thomas Van Doren

Electrical and Computer Engineering Faculty Research & Creative Works

The performance of typical low-pass capacitor filters is limited by the mutual inductance between the input and output sides of the filter. This paper describes how two appropriately spaced capacitors can be used to construct a low-pass filter with significantly better high-frequency performance than a one-capacitor filter. Laboratory measurements and numerical simulations are used to quantify the mutual inductance and compare the performance of one- and two-capacitor low-pass filters.


Decoupling Strategies For Printed Circuit Boards Without Power Planes, Todd H. Hubing, Hwan-Woo Shim, Theodore M. Zeeff Jan 2002

Decoupling Strategies For Printed Circuit Boards Without Power Planes, Todd H. Hubing, Hwan-Woo Shim, Theodore M. Zeeff

Electrical and Computer Engineering Faculty Research & Creative Works

Traditional decoupling capacitors connected between V/CC/ and GND traces can be relatively ineffective at frequencies above their self-resonant frequency. This paper evaluates decoupling capacitor mounting strategies on boards without power planes. Techniques for minimizing mutual inductance and improving decoupling at frequencies above resonance are investigated.


Dc Power-Bus Design Using Fdtd Modeling With Dispersive Media And Surface Mount Technology Components, Xiaoning Ye, Marina Koledintseva, Min Li, James L. Drewniak Nov 2001

Dc Power-Bus Design Using Fdtd Modeling With Dispersive Media And Surface Mount Technology Components, Xiaoning Ye, Marina Koledintseva, Min Li, James L. Drewniak

Electrical and Computer Engineering Faculty Research & Creative Works

DC power-bus modeling in high-speed digital design using the finite-difference time-domain (FDTD) method is demonstrated herein. The dispersive character of the dielectric layers used in printed circuit board substrates is taken into account in this study. In particular, FR-4 is considered. The complex permittivity of the dielectric is approximated by a Debye model. A wide-band frequency response (100 MHz-5 GHz) is obtained through a single FDTD simulation. Good agreement is achieved between the modeled and measured results for a typical dc power-bus structure with multiple surface mount technology (SMT) decoupling capacitors placed on the printed circuit board (PCB). The FDTD …


Quantifying Smt Decoupling Capacitor Placement In Dc Power-Bus Design For Multilayer Pcbs, Jun Fan, James L. Drewniak, James L. Knighten, Norman W. Smith, Antonio Orlandi, Thomas Van Doren, Todd H. Hubing, Richard E. Dubroff Nov 2001

Quantifying Smt Decoupling Capacitor Placement In Dc Power-Bus Design For Multilayer Pcbs, Jun Fan, James L. Drewniak, James L. Knighten, Norman W. Smith, Antonio Orlandi, Thomas Van Doren, Todd H. Hubing, Richard E. Dubroff

Electrical and Computer Engineering Faculty Research & Creative Works

Noise on a dc power-bus that results from device switching, as well as other potential mechanisms, is a primary source of many signal integrity (SI) and electromagnetic interference (EMI) problems. Surface mount technology (SMT) decoupling capacitors are commonly used to mitigate this power-bus noise. A critical design issue associated with this common practice in high-speed digital designs is placement of the capacitors with respect to the integrated circuits (ICs). Local decoupling, namely, placing SMT capacitors in proximity to ICs, is investigated in this study. Multilayer PCB designs that employ entire layers or area fills for power and ground in a …