Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Room-Temperature Spin-Polarized Organic Light-Emitting Diodes With A Single Ferromagnetic Electrode, Baofu Ding, Qunliang Song, Kamal Alameh Jan 2014

Room-Temperature Spin-Polarized Organic Light-Emitting Diodes With A Single Ferromagnetic Electrode, Baofu Ding, Qunliang Song, Kamal Alameh

ECU Publications Post 2013

In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150 mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic ...


Bimetallic Non-Alloyed Nps For Improving The Broadband Optical Absorption Of Thin Amorphous Silicon Substrates, Chee L. Tan, Sung J. Jang, Young M. Song, Kamal Alameh, Yong T. Lee Jan 2014

Bimetallic Non-Alloyed Nps For Improving The Broadband Optical Absorption Of Thin Amorphous Silicon Substrates, Chee L. Tan, Sung J. Jang, Young M. Song, Kamal Alameh, Yong T. Lee

ECU Publications Post 2013

We propose the use of bimetallic non-alloyed nanoparticles (BNNPs) to improve the broadband optical absorption of thin amorphous silicon substrates. Isolated bimetallic NPs with uniform size distribution on glass and silicon are obtained by depositing a 10-nm Au film and annealing it at 600°C; this is followed by an 8-nm Ag film annealed at 400°C. We experimentally demonstrate that the deposition of gold (Au)-silver (Ag) bimetallic non-alloyed NPs (BNNPs) on a thin amorphous silicon (a-Si) film increases the film's average absorption and forward scattering over a broad spectrum, thus significantly reducing its total reflection performance. Experimental ...