Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Doctoral Dissertations

Ceramic Materials

Institution
Keyword
Publication Year

Articles 1 - 30 of 81

Full-Text Articles in Engineering

Characterizing The Structure And Radiation Resistance Of Weberite-Type Complex Oxides, Igor M. Gussev Dec 2023

Characterizing The Structure And Radiation Resistance Of Weberite-Type Complex Oxides, Igor M. Gussev

Doctoral Dissertations

Weberite-type A3BO7 oxides, where A is a trivalent rare earth and B is a pentavalent element like Ta, have been a focus of research due to the discovery of the weberite-type local atomic arrangement in ceramics with a defect-fluorite structure. Earlier studies primarily examined their long-range structures, leaving gaps in understanding their short-range atomic behavior. This thesis investigates various weberite-type tantalates across all structural scales. There has been debate over the long-range structure of Y3TaO7, a medium-sized rare earth tantalate oxide, particularly regarding its spacegroup symmetry. This work identifies Y3TaO7 …


Intragranular Tungsten-Titanium Carbide Composite Ceramics Via Gas-Solid Displacement Reactions, Ryan Daniel Dempsey Jan 2023

Intragranular Tungsten-Titanium Carbide Composite Ceramics Via Gas-Solid Displacement Reactions, Ryan Daniel Dempsey

Doctoral Dissertations

"Research presented herein details the synthesis and characterization of nanocomposite ceramics featuring novel heterogeneous microstructures of potential interest in a variety of electrical and structural applications. Specifically, W-TiCy composite ceramics featuring tungsten nanoprecipitates located primarily within TiCy grains have been produced via sintering of intragranular nanocomposite powders produced via reaction processing-based techniques. This dissertation details the thermodynamic basis and applied kinetics of a processing scheme for fabricating nanocomposite ceramics whose morphological heterogeneity reflects that originally developed in the powder state. The first study in this series overviews the motivation for applying metallothermic displacement reactions, conducted through gaseous intermediates, to solid …


Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin Dec 2022

Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin

Doctoral Dissertations

Nuclear thermal propulsion (NTP) utilizes nuclear fission to double the efficiency of
in-space propulsion systems compared with traditional combustion rocket systems.
NTP systems are limited primarily by the fuel material choice, due to the extreme
conditions they will need to endure, including temperatures up to 3000 K, multiple
thermal cycles with rapid heating and cooling, exposure to hot flowing hydrogen,
large thermal gradients, and high neutron flux. Particle based fuels, namely ceramic-
metallic (cermet) and ceramic-ceramic (cercer) composites are both promising fuel
element material candidates for NTP. Given the high temperature nature, these
materials are difficult to fabricate and very …


Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck Sep 2022

Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck

Doctoral Dissertations

Advanced nanooptics in the areas of flat lenses, diffractive elements, and tunable emissivity require a route to high throughput manufacturing. Nanooptics are often demanding of high refractive index materials, nanometer precision and ease of fabrication. Nanoimprint lithography (NIL) is a low-cost, high throughput manufacturing technique beginning to be realized in commercial industry.1,2 The NIL process is an ideal manufacturing candidate due to its ability to have a fast process time, efficient use of materials, repeatability and high precision while also having wide diversity of potential structures and material choices. Appling NIL techniques to other facets of manufacturing enable the …


Synthesis And Property Characterization Of Rare-Earth High-Entropy Oxides With Pyrochlore-Type Structures, Candice Kinsler-Fedon May 2022

Synthesis And Property Characterization Of Rare-Earth High-Entropy Oxides With Pyrochlore-Type Structures, Candice Kinsler-Fedon

Doctoral Dissertations

In the search for novel materials with advanced physical properties, the concept of adding configurational entropy onto a single atomic site is known to provide new avenues toward material discovery. In the case of high entropy oxides (HEOs), the ability to “tune” a material’s properties by having multiple cations on single or multiple sites allows for greater opportunity to design materials for specific applications. The work presented here explores the synthesis of new multicomponent (high entropy) oxides, followed by a detailed characterization using several techniques. We have successfully synthesized multiple single-phase polycrystalline rare-earth high entropy oxides and grown large, bulk …


Joining Of Ultra-High Temperature Ceramics To The Same And Refractory Metals Via Fusion Welding, Jecee Jarman Jan 2022

Joining Of Ultra-High Temperature Ceramics To The Same And Refractory Metals Via Fusion Welding, Jecee Jarman

Doctoral Dissertations

"This research focuses on the joining of ultra-high temperature ceramics to either themselves or refractory metals/alloys via fusion welding and the mechanical strength of produced joints. The ceramics studied consisted of compositions within a diboride-carbide-carbide ternary system while metals studied consisted of molybdenum and a molybdenum alloy. SiC-ZrB2-ZrC ceramics on a binary join between pure SiC and the ternary eutectic composition were found to be weldable when SiC content was below ~57.5 vol%. Compositions above 57.5 vol% SiC were unweldable based on pitting and off-gassing behavior. Welded strength of ceramics was ~180-300 MPa in the SiC-ZrB2-ZrC ternary eutectic composition, ~180-220 …


Mechanical Properties Of Boride Based Ceramics, Alec Murchie Jan 2022

Mechanical Properties Of Boride Based Ceramics, Alec Murchie

Doctoral Dissertations

“This research focuses on the elevated mechanical properties of diboride based materials at room and elevated temperatures. These materials include a ZrB2 ceramic, a ZrB2-WC-SiC ceramic, and a (Hf,Mo,Nb,Ta,W,Zr)B2 high entropy boride (HEB). The room temperature flexural strength for the ZrB2 ceramic was 447 MPa and the fracture toughness was 2.3 MPa·m1/2. The strength decreased to 196 MPa at 1800°C, and then increased to 360 MPa at 2300°C. The fracture toughness increased to 3.1 MPa·m1/2 at 2200°C. The strength up to 1800°C was likely controlled by a combination of effects: surface damage …


Processing Of Preceramic Polymers For Direct-Ink Writing, James W. Kemp Dec 2021

Processing Of Preceramic Polymers For Direct-Ink Writing, James W. Kemp

Doctoral Dissertations

Preceramic polymers are organosilicon polymers that, when pyrolyzed to above 1000°C, convert from a polymer to an amorphous ceramic. These polymers have been used for fiber spinning, polymer infiltration, and casting of materials but have recently gained interest for use as the feedstock material for additive manufacturing techniques. This work explores preceramic polymers being used for direct-ink writing (an additive manufacturing method) and many of the issues that occur with the polymers during curing and pyrolysis.

The first chapter of this dissertation provides a review of preceramic polymers, while the second and third chapters focus on the development of inks …


Synthesis And Physical Properties Of High Entropy Oxide Ceramics, Brianna L. Musicó May 2021

Synthesis And Physical Properties Of High Entropy Oxide Ceramics, Brianna L. Musicó

Doctoral Dissertations

Utilizing entropy as the driving force for stabilizing oxide materials offers a path for the discovery of innovative compounds with unique structure-property relations. The multi-cation approach inherent to high entropy oxides (HEOs) is expected to allow for the tailoring of physical properties that meet the requirements of potential applications. However, the intrinsic disorder and highly localized chemical environments of HEOs bring along new challenges. In order to shed light on the complexities associated multi-cation oxides, we have initiated a systematic study of polycrystalline HEO samples across multiple crystal systems. This work expands the multi-component concept to new compositions and crystal …


Contributions To The Performance Of Thin Film Capacitors For High Reliability Applications, Daniel Krueger Jan 2021

Contributions To The Performance Of Thin Film Capacitors For High Reliability Applications, Daniel Krueger

Doctoral Dissertations

"Capacitors are critical devices in microelectronic assemblies that must be incorporated into electronic systems through a variety of ways such as integrated or discrete devices. This work has developed new thin film capacitors deposited directly onto multichip module or printed circuit board surfaces to benefit from closer integration that enhances system performance for use in high reliability applications. The capacitors serve as filters or provide tuning and energy storage functions. Unexpected performance was observed during development that included low adhesion of the films to the substrates, higher effective dielectric constants than reported in literature, and low yields. Three publications resulted …


Thermal And Mechanical Properties Of Novel Carbide Materials, Evan Charles Schwind Jan 2021

Thermal And Mechanical Properties Of Novel Carbide Materials, Evan Charles Schwind

Doctoral Dissertations

"This research focuses on studying the thermal and mechanical properties of novel carbide materials at room and elevated temperatures. The novel carbide materials investigated include zeta phase tantalum carbide (ζ-Ta4C3-x) and a high entropy (Ta,Hf,Nb,Zr)C carbide. The electrical resistivity and thermal conductivity of zeta phase tantalum carbide (~96 wt.%) were measured as 160 ± 4.2 μΩ-cm and 9.6 W/m•K. These are higher and lower (respectively) than for cubic tantalum carbide, most likely due to planes of carbon vacancies present in the ζ-Ta4C3-x crystal structure. The thermal conductivity of (Ta,Hf,Nb,Zr)C was lower than any …


Studying The Effects Of Various Process Parameters On Early Age Hydration Of Single- And Multi-Phase Cementitious Systems, Rachel Cook Jan 2020

Studying The Effects Of Various Process Parameters On Early Age Hydration Of Single- And Multi-Phase Cementitious Systems, Rachel Cook

Doctoral Dissertations

”The hydration of multi-phase ordinary Portland cement (OPC) and its pure phase derivatives, such as tricalcium silicate (C3S) and belite (ß-C2S), are studied in the context varying process parameters -- for instance, variable water content, water activity, superplasticizer structure and dose, and mineral additive type and particle size. These parameters are studied by means of physical experiments and numerical/computational techniques, such as: thermodynamic estimations; numerical kinetic-based modelling; and artificial intelligence techniques like machine learning (ML) models. In the past decade, numerical kinetic modeling has greatly improved in terms of fitting experimental, isothermal calorimetry to kinetic-based modelling …


Quantitative Probing Of Vacancies And Ions Dynamics In Electroactive Oxide Materials, Jiaxin Zhu Mar 2019

Quantitative Probing Of Vacancies And Ions Dynamics In Electroactive Oxide Materials, Jiaxin Zhu

Doctoral Dissertations

Oxygen vacancy and ion dynamics in functional oxides are critical factors influencing electrical conductivity and electrochemical activity of oxides assemblies. The recent advancements in deposition and fabrication of oxide heterostructured films with atomic-level precision has led to discovery of intriguing physical properties and new artificial materials. While still under debate, researchers most often attribute these observed behaviors to unique oxygen vacancy distributions in the substrate near heterointerfaces. In electroactive oxides devices such as solid oxide cells (SOCs), oxygen vacancy and ion transport at the triple-phase boundary determines the performance of the device. This complex process motivates numerous remaining questions regarding …


Direct Patterning Of Nature-Inspired Surfaces For Biointerfacial Applications, Feyza Dundar Mar 2019

Direct Patterning Of Nature-Inspired Surfaces For Biointerfacial Applications, Feyza Dundar

Doctoral Dissertations

There are three major challenges for the design of patterned surfaces for biointerfacial applications: (i) durability of antibacterial/antifouling mechanisms, (ii) mechanical durability, and (iii) lifetime of the master mold for mass production of patterned surfaces. In this dissertation, we describe our contribution for the development of each of these challenges. The bioinspired surface, Sharklet AFTM, has been shown to reduce bacterial attachment via a biocide-free structure-property relationship effectively. Unfortunately, the effectiveness of polymer-based sharkskin surfaces is challenged over the long term by both eventual bacteria accumulation and a lack of mechanical durability. To address these common modes of …


Fabrication Of High Refractive Index, Periodic, Composite Nanostructures For Photonic And Sensing Applications, Irene Howell Nov 2018

Fabrication Of High Refractive Index, Periodic, Composite Nanostructures For Photonic And Sensing Applications, Irene Howell

Doctoral Dissertations

This dissertation examines methods of fabricating high refractive index, periodic structures and their applications. Structures with a refractive index periodicity in one-dimensionally are fabricated by stacking layers of (high-refractive index) nanoparticle-filled and unfilled layers. More complex two- and three-dimensional structures are fabricated by direct printing of nanoparticles via solvent-assisted soft nanoimprint lithography. Polymer-nanoparticle composites are an active area of research and development especially for photonic applications. We show use of two composite formulations, first for fabrication of one-dimensional photonic crystals, and second for scalable UV-nanoimprinting. One dimensional photonic crystals, which possess a periodicity in refractive index, result in a constructive …


Self-Assembling Networks In Soft Materials, Ishan Prasad Jul 2018

Self-Assembling Networks In Soft Materials, Ishan Prasad

Doctoral Dissertations

This dissertation presents a study on heterogeneous network structure in two distinct classes of soft material systems: disordered assemblies of jammed binary spheres and ordered morphologies of block copolymer melts. The aim is to investigate the combined role of geometry and entropy in structure formation of soft matter assemblies. First, we investigate the influence of particle size asymmetry on structural properties of jammed binary sphere mixtures. We give evidence of two distinct classes of materials separated by a critical size ratio that marks the onset of a sharp transition due to simultaneous jamming of a sub-component of the packing. We …


Low Energy Recoil Simulations In Mgo, Linbo3, And Litao3 Using Ab Initio Molecular Dynamics, Benjamin Aaron Petersen Dec 2017

Low Energy Recoil Simulations In Mgo, Linbo3, And Litao3 Using Ab Initio Molecular Dynamics, Benjamin Aaron Petersen

Doctoral Dissertations

Ab initio molecular dynamics (AIMD) was utilized to test a series of materials, MgO, LiNbO3 , and LiTaO3 , to determine defect structures produced due to low energy recoil events . The kinetic energy required to displace an atom from its lattice site, the threshold displacement energy, was calculated for an array of directions in each material, based on symmetry and complexity of the structure. MgO having a simple rock salt structure provided a model material for demonstrating computational techniques used later on LiTaO3 and LiNbO3 . The minimum values for displacing an atom were at …


First-Principles Study Of Point Defect Behavior At Interfaces And In-Plane Strain Fields, Jianqi Xi Aug 2017

First-Principles Study Of Point Defect Behavior At Interfaces And In-Plane Strain Fields, Jianqi Xi

Doctoral Dissertations

Interfaces in solid materials are the so-called boundaries, separating crystals with the same structure and chemistry but different orientations, e.g. grain boundaries (GBs), different stacking sequences, e.g. stacking faults (SFs), or crystals with different structures and/or chemistries as well as orientations, e.g. the interface between substrate and thin film. In this study, first-principles calculations are used to investigate the defect behavior at different interfaces and in-plane strain fields, such as stacking fault (SF) in silicon carbide (SiC), in-plane strain field near interfaces in potassium tantalate (KTaO3), and grain boundary in ceria (CeO2).

Results show that the …


Helium Diffusion And Accumulation In Gd2ti2o7 And Gd2zr2o7, Caitlin Anne Taylor Dec 2016

Helium Diffusion And Accumulation In Gd2ti2o7 And Gd2zr2o7, Caitlin Anne Taylor

Doctoral Dissertations

The effects of helium accumulation on bubble formation and mechanical properties, as well as the fundamentals of helium diffusion in pyrochlores, are experimentally investigated in Gd2Ti2O7 [gadolinium titanate] and Gd2Zr2O7 [gadolinium zirconate]. We find that helium accumulation results in bubble formation at concentrations of 6 at.% in pre-damaged Gd2Ti2O7 and 4.6 at.% in pre-damaged Gd2Zr2O7. Lattice parameter, residual stress, and hardness changes due to helium accumulation were investigated in Gd2Zr2O7, which remains crystalline …


Characterizing Local Order And Physical Properties Of Rare Earth Complex Oxides, Thomas Jacob Shamblin Aug 2016

Characterizing Local Order And Physical Properties Of Rare Earth Complex Oxides, Thomas Jacob Shamblin

Doctoral Dissertations

With more than 500 compositions, materials possessing the pyrochlore structure have a myriad of technological applications and physical phenomena. Three of the most noteworthy properties are the structure’s ability to resist amorphization making it a possible host matrix for spent nuclear fuel, its exotic magnetic properties arising from geometric frustration, and fast ionic conductivity for solid-oxide fuel cell applications. This work focuses on these three aspects of the pyrochlore’s many potential uses. Structural characterization revealed that pyrochlore-type oxides have a tendency to disorder from a high symmetry cubic structure to a lower symmetry orthorhombic arrangement in response to a variety …


(I) Polymer Nanocomposites: Rheology And Processing For Mesoporous Materials And (Ii) Nanopatterning Of Metal Oxides Using Soft Lithography, Rohit Kothari Mar 2016

(I) Polymer Nanocomposites: Rheology And Processing For Mesoporous Materials And (Ii) Nanopatterning Of Metal Oxides Using Soft Lithography, Rohit Kothari

Doctoral Dissertations

The research in this dissertation is categorized into two parts. The first part is focused on investigation of order-to-disorder transitions (ODT) in nanocomposites of an amphiphilic block copolymer containing various hydrogen-bonded additives, and fabrication of novel mesoporous silica based materials by utilizing such nanocomposites as templates. Disordered Pluronic®, poly(ethylene oxide) (PEO)−poly(propylene oxide) (PPO)−PEO triblock copolymer upon blending with small molecule additives containing hydrogen-bond-donating functional groups (carboxyl or hydroxyl) result into ordered nanoscale morphologies by preferentially interacting with the hydrophilic PEO chains in the Pluronic®. The dependence of ODT-temperature in these novel Pluronic®/small-molecule-additive complexes on composition, number and type of functional …


Ion Irradiation-Induced Microstructural Change In Sic, Chien-Hung Chen Dec 2015

Ion Irradiation-Induced Microstructural Change In Sic, Chien-Hung Chen

Doctoral Dissertations

The high temperature radiation resistance of nuclear materials has become a key issue in developing future nuclear reactors. Because of its mechanical stability under high-energy neutron irradiation and high temperature, silicon carbide (SiC) has great potential as a structural material in advanced nuclear energy systems.

A newly developed nano-engineered (NE) 3C SiC with a nano-layered stacking fault (SFs) structure has been recently considered as a prospective choice due to enhanced point defect annihilation between layer-type structures, leading to outstanding radiation durability.

The objective of this project was to advance the understanding of gas bubble formation mechanisms under irradiation conditions in …


Ion Irradiation Induced Damage And Dynamic Recovery In Single Crystal Silicon Carbide And Strontium Titanate, Haizhou Xue Aug 2015

Ion Irradiation Induced Damage And Dynamic Recovery In Single Crystal Silicon Carbide And Strontium Titanate, Haizhou Xue

Doctoral Dissertations

The objective of this thesis work is to gain better understanding of ion-solid interaction in the energy regime where electronic and nuclear energy loss are comparable. Such responses of materials to ion irradiations are of fundamental importance for micro-electronics and nuclear applications. The ion irradiation induced modification for the crystal structure, the physical and chemical properties etc. may strongly affect the performance of functional materials that needs to be better understood.

Experimentally, ion irradiation induced damage accumulation and dynamic recovery in SiC [silicon carbide] and SrTiO3 [strontium titanate] were studied in this dissertation project. Five chapters are presented: Firstly, …


Crystal Growth And Physical Property Characterization Of Complex Perovskite Oxides, Ling Li Aug 2015

Crystal Growth And Physical Property Characterization Of Complex Perovskite Oxides, Ling Li

Doctoral Dissertations

Bulk EuTiO3 [europium titanate], a quantum paraelectric antiferromagnet, is shown to exhibit multiferroic behavior in strained thin film form, which highlights the spin-phonon coupling in this system. We have investigated the structural, elastic, magnetic, thermal and transport properties of single crystals of EuTiO3 as well as doped system EuTi1-xBxO3 (B = Zr, Nb) [Zr and Nb doped europium titanate] utilizing various experimental techniques and theoretical calculations.

The cubic to tetragonal structural transition in pure EuTiO3 is characterized by a pronounced step-like softening of the elastic moduli near 288 K [kelvin], which resembles …


Development And Improvement Of Cerium Activated Gadolinium Gallium Aluminum Garnets Scintillators For Radiation Detectors By Codoping, Fang Meng Aug 2015

Development And Improvement Of Cerium Activated Gadolinium Gallium Aluminum Garnets Scintillators For Radiation Detectors By Codoping, Fang Meng

Doctoral Dissertations

Ce doped Gd3Ga3Al2O12 [gadolinium gallium aluminium oxides] is considered as a promising candidate for the next generation Positron Emission Tomography material due to its high light yield in theory. This dissertation is focused on studying the Gd3Ga3Al2O12:Ce crystals by codoping, aiming to improve the light yield and decay time experimentally and understand the underlying mechanism.

The work starts from prescreening appropriate codopants for Gd3Ga3Al2O12:Ce crystals. A cost-effective method is developed to predict the performance of the single crystals by characterizing the radioluminescence intensity and photoluminescence decay of the small polycrystalline pellets. This method is demonstrated by showing that the results …


Electronic Energy Loss Of Heavy Ions And Its Effects In Ceramics, Ke Jin May 2015

Electronic Energy Loss Of Heavy Ions And Its Effects In Ceramics, Ke Jin

Doctoral Dissertations

Energy loss of medium energy heavy ions (i.e. Cl, Br, I, and Au) in thin compound foils containing light elements (i.e. silicon carbide and silicon dioxide) is directly measured using a time-of-flight elastic recoil detection analysis (ToF-ERDA) technique. An improved data analysis procedure is proposed to provide the experimentally determined electronic stopping powers. This analysis procedure requires reliable predictions of nuclear stopping. Thus, the nuclear stopping predicted by the Stopping and Range of Ions in Matter (SRIM) code is validated by measuring the angular distribution of 1 MeV Au ions after penetrating a thin silicon nitride foil, using a secondary …


Fusion Welding Of Diboride-Carbide Ceramic Composites, Derek Scott King Jan 2015

Fusion Welding Of Diboride-Carbide Ceramic Composites, Derek Scott King

Doctoral Dissertations

"Plasma and pulsed plasma arc welding (PAW and PPAW) processes were used to fusion weld ZrB2 containing 20 vol% ZrC. Varying welding parameters resulted in changes in weld pool shape and size, and the size of ZrB2 grains within the fusion zone. For PAW processes that resulted in a keyhole fusion zone (full penetration), the arc to workpiece power transfer efficiency was estimated to be 2 grain lengths were observed to decrease between binary PAW FZs (~1 mm in length), and binary PPAW FZs (~0.8 mm in length), and an increasing aspect ratio for ZrB2 grains in …


Characterizing The Mechanical Behavior Of Single And Polycrystalline Silicon Carbide Using Nanoindentation., Amit Datye Dec 2014

Characterizing The Mechanical Behavior Of Single And Polycrystalline Silicon Carbide Using Nanoindentation., Amit Datye

Doctoral Dissertations

This research aims at enhancing the fundamental understanding of mechanisms controlling the deformation and fracture of silicon carbide based ceramics (single- and poly-crystal). The role of microstructure and material properties on the energy absorption capability of SiC is studied. This research helps to improve the ability to quantitatively predict the initiation and propagation of fracture and the interaction between fracture and plasticity, which provides a step towards a mechanistic understanding of deformation and failure properties of ceramic single crystals and polycrystals. The validity of the indentation-cracking method for toughness measurement is examined using nanoindentation tests with different indenters (spherical, pyramidal). …


Thermodynamic Modeling Of Uranium And Oxygen Containing Ternary Systems With Gadolinium, Lanthanum, And Thorium, Jacob Wesley Mcmurray Dec 2014

Thermodynamic Modeling Of Uranium And Oxygen Containing Ternary Systems With Gadolinium, Lanthanum, And Thorium, Jacob Wesley Mcmurray

Doctoral Dissertations

The CALPHAD method is used to assess the thermodynamic properties and phase relations in the U-M-O system where M = Gd, La, and Th. A compound energy formalism (CEF) model for fluorite UO2±x [urania] is extended to represent the complex U1-yMyO2±x [urania solid solution] phases. The lattice stabilities for fictive GdO2 [gadolinia] and LaO2 [lanthana] fluorite structure compounds are calculated from density functional theory (DFT) for use in the CEF for U1-yMyO2±x [urania solid solution phase] while U6+ [uranium 6 plus cation] is introduced into the …


Plastic Anisotropy Of Complex Crystals And Hierarchically Structured Alloys Using Micro-Mechanical Computational Analysis, Lin Li Dec 2014

Plastic Anisotropy Of Complex Crystals And Hierarchically Structured Alloys Using Micro-Mechanical Computational Analysis, Lin Li

Doctoral Dissertations

The material anisotropy is one of the most important material properties that cannot be disregarded in today’s world of materials designing and manufacturing. As new materials being developed and new material demands are introduced the inevitable focus on anisotropic materials has been brought under the spotlight. In this dissertation, several experimental and simulation project regarding material anisotropic effects on hexagonal close packed crystals such as Silicon Carbide as well and hierarchically structured solid solution ferritic based alloys. The general purpose was to demonstrate the improvement on various intended material properties using finite element method. Since indentation is a widely used …