Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 222

Full-Text Articles in Engineering

Upcyclying Of Polyethylene Terephtalate By Addition Of Thermoplastic Elastomer, Diego Francisco Bermudez Dec 2023

Upcyclying Of Polyethylene Terephtalate By Addition Of Thermoplastic Elastomer, Diego Francisco Bermudez

Open Access Theses & Dissertations

Continual overconsumption of single-use plastics has generated challenges of solid waste management across the United States. Common plastic waste management solutions, such as landfill, have caused the migration of contaminants into the environment consequently affecting not only the health of wildlife, but also that of human beings. Alternative strategies for the handling of single-use plastic such as polyethylene terephthalate (PET), used in the food packaging industry, can ultimately help mitigate the noxious consequences of single-use plastics affecting entire ecosystems. This study demonstrates a potential avenue of materials upcycling by studying the effects of coupling PET with the thermoplastic elastomer styrene-ethylene-butylene-styrene …


Effect Of Multiple Machine Configurations And Wall Thickness On Microstructure And Microhardness Of Laser Powder Bed Fusion (L-Pbf) Additively Manufactured Heat-Treated Inconel 718 Products, Anannya Doris Dec 2023

Effect Of Multiple Machine Configurations And Wall Thickness On Microstructure And Microhardness Of Laser Powder Bed Fusion (L-Pbf) Additively Manufactured Heat-Treated Inconel 718 Products, Anannya Doris

Open Access Theses & Dissertations

This research examined thin section prototypes having seven nominal thicknesses ranging from 0.1 to 2.0 mm, composing a series of geometric feature build plates manufactured by multiple laser powder bed fusion (L-PBF) machine configurations. The build plates and thin section feature prototypes underwent a full heat treatment cycle per established standards: anneal at 1066°C, SR+HIP at 1163°C, and fully treat-treated by combining SR+HIP+solution treatment at 1066°C and double aging treatment at 760°C and 680°C, respectively. The fully heat-treated (FHT) Inconel 718 wall specimens were sectioned from 16 distinct geometric feature build plates constructed on 15 different L-PBF machines. The thin …


Ultrasonic Non-Destructive Evaluation Of Additively Manufactured Polymer-Ceramic Composites, Christian Alexander Ruiz Dec 2023

Ultrasonic Non-Destructive Evaluation Of Additively Manufactured Polymer-Ceramic Composites, Christian Alexander Ruiz

Open Access Theses & Dissertations

Digital light processing (DLP) is an attractive additive manufacturing technique due to its ability to create ceramic parts with complex geometries. DLP uses ultraviolet light to polymerize a slurry comprised of ceramic powder and photosensitive resin in layers to create solid parts. Printing parameters such as light intensity and exposure time are critical when producing these parts. Improper parameters can lead to over or under-curing, adversely impacting print quality and strength. Samples were printed at varying layer exposure times and then tested using ultrasonics to determine the degree of conversion. Additionally, ultrasonics were used as a non-destructive technique to obtain …


Development Of A 3d Printed Conductive Biopolymer For Cardiac Tissue Engineering, Britanny Lizeth Stark Dec 2023

Development Of A 3d Printed Conductive Biopolymer For Cardiac Tissue Engineering, Britanny Lizeth Stark

Open Access Theses & Dissertations

Cardiovascular disease (CVD) is the leading cause of death in the US, with approximately 859,000 deaths each year. The major contributor to CVD is Acute Myocardial Infarction (AMI), which causes the death of approximately 25% of the cardiomyocytes present in the left ventricle of the heart. After AMI, the adult human heart has a very limited regenerative capacity. Moreover, the electrical propagation of the myocardium is severely disrupted, making the heart more susceptible to failure and patient death. However, current pharmacological treatments do not address the loss of cardiomyocytes and the disruption of electrical propagation in the heart. Tissue engineering …


Characterization Of Fcc Al-Cu-Ni-Mn-Ag High Entropy Alloy, Gina Zavala Alvarado Dec 2023

Characterization Of Fcc Al-Cu-Ni-Mn-Ag High Entropy Alloy, Gina Zavala Alvarado

Open Access Theses & Dissertations

The effect of Ag on the microstructure developed in Al-Cu-Ni-Mn alloy has been determined. The modified Al-Cu-Ni-Mn alloy by Ag addition shows the presence of three microconstituents consisting of phases rich in (1) Cu, (2) Ni, and (3) Ag. The foregoing alloys heated for 24 hours from 600 to 1000 °C show excellent oxidation resistance. Oxide formation and microstructural changes of the alloy have been characterized by elemental mapping and X-ray diffraction (XRD). Results show that the elements of Al and Mn preferentially oxidize while Cu and Ni provide oxidation resistance to the alloy. Hardness was taken on the alloy …


Design And Development Of Transition Metal-Based Electrocatalysts For Environmentally Friendly And Efficient Hydrogen Evolution Reactions (Her), Navid Attarzadeh Aug 2023

Design And Development Of Transition Metal-Based Electrocatalysts For Environmentally Friendly And Efficient Hydrogen Evolution Reactions (Her), Navid Attarzadeh

Open Access Theses & Dissertations

Hydrogen fuel is a clean energy source primarily because it emits no carbon dioxide (CO2). Sustainable energy alternatives have attracted the scientific community and policymakers as concerns over global warming and depletion of fossil fuels have increased significantly. Substituting H2 gas as a primary source for our daily energy consumption under the guideline of the hydrogen economy concept has not progressed as anticipated because of inadequate efficiency associated with the generation (electrolyzer) and utilization (fuel cell) devices. However, there are challenges associated with hydrogen that must be overcome for it to become a truly sustainable and widespread energy source. The …


Double Cantilever Beam Mode-I Testing Validation In Large-Scale Additive Manufacturing Carbon Composite, Luis Alfonso Camacho Aug 2023

Double Cantilever Beam Mode-I Testing Validation In Large-Scale Additive Manufacturing Carbon Composite, Luis Alfonso Camacho

Open Access Theses & Dissertations

Testing for mechanical properties for additive manufacturing has been based on already existing standards for traditional manufacturing methods. For composites in large scale additive manufacturing there is a research gap in bond strength and fracture toughness for a single layer interface. By using Double cantilever beam Mode I, this thesis manuscript validates testing parameters and protocols to describe the intricacies of ABS matrix 20 wt.% carbon filled composite, specifically on the layer-to-layer interface. Studies suggest that fracture toughness is sensitive to process parameters, like deflection speed and sharpened crack tip at the layer interface of BAAM 3D printed part and …


Studies On Atomic And Molecular Properties Using Locally Scaled And Perdew-Zunger Self-Interaction Corrected Density Functional Approximations, Philip Adeniyi Oyedele Aug 2023

Studies On Atomic And Molecular Properties Using Locally Scaled And Perdew-Zunger Self-Interaction Corrected Density Functional Approximations, Philip Adeniyi Oyedele

Open Access Theses & Dissertations

This thesis examines some properties of atoms and molecules using one-electron self-interaction-correction (SIC) methods such as the Perdew-Zunger SIC (PZSIC) and the locally scaled SIC method of Zope and coworkers within the Fermi-Lowdin SIC formal- ism. The accuracy of electron density is examined by comparing moments of the den- sity, ⟨r^n⟩ = ∫ ρ(r)rndτ = ∫ ∞ 0 4πr2ρ(r)rndr (n = −2, −1, 0, 1, 2, 3) with the corresponding available values from the Coupled cluster (CC) singles, doubles, and perturbative triples (CCSD(T)) method. Three test sets are considered: boron through neon neutral atoms, two and four electron cations, and …


Electrochemical Approaches To Life-Support Resources In Space Missions And Nuclear Technologies: Hydrogen Peroxide And Uranium Films, Armando Manuel Pena-Duarte Aug 2023

Electrochemical Approaches To Life-Support Resources In Space Missions And Nuclear Technologies: Hydrogen Peroxide And Uranium Films, Armando Manuel Pena-Duarte

Open Access Theses & Dissertations

Space race has developed several technological advances that have achieved and continue to achieve the success of space missions in the aerospace timeline. Currently, the number of space technical and scientific innovations is still growing––demanding new materials and developments for extreme performing applications of fuel cells, batteries, supercapacitors, and systems of nuclear energy. Space missions require life-support solutions, auto-sustainable closed-loop living environments, cleaning and sanitizing solutions against pathogens, and safe nuclear-based resources of energy––with fissile materials with well-controlled dimensions within the core fuel elements. Likewise, to guarantee safety conditions, reduce costs, and facilitate operational logistics, space missions must reduce their …


Thermal Behavior Of Plain And Fiber-Reinforced Rigid Concrete Airfield Runways, Arash Karimi Pour May 2023

Thermal Behavior Of Plain And Fiber-Reinforced Rigid Concrete Airfield Runways, Arash Karimi Pour

Open Access Theses & Dissertations

The environmental condition and temperature gradient are important factors resulting in concrete airfield runways cracking during the time. Rigid concrete airfield runways experience different thermal gradients during the day and night due to changes in air temperature. Curling and thermal expansion stresses are the main consequences resulting in various types of cracking over the surface and thickness of concrete airfield runways and increasing maintenance costs. The curvature of concrete slabs increases with an increase in the temperature gradient which is amplified when runways open to traffic. Additionally, the combination of the curling and shrinkage stresses, in rare circumstances, can be …


Characterization Of Novel Self-Healing Polymer Blends For Additive Manufacturing, Truman James Word May 2023

Characterization Of Novel Self-Healing Polymer Blends For Additive Manufacturing, Truman James Word

Open Access Theses & Dissertations

This dissertation begins with an overview of novel polymer systems which have been developed by the Polymer Extrusion Lab at the University of Texas at El Paso. Many composite polymer systems have been created using many different polymers as well as ceramics and metals primarily in the form of powders added to the bulk polymer. The bulk of this work entails a study that was conducted to develop and characterize the mechanical, shape memory and self-healing properties of three polymer blends: polylactic acid (PLA) combined with maleated styrene-ethylene-butylene-styrene (SEBS-g-MA), acrylonitrile butadiene styrene (ABS) combined with maleated styrene-ethylene-butylene-styrene (SEBS-g-MA), and polylactic …


Sulfonated Styrene Grafted Sebs/Abs Made By Additive Manufacturing For Ion Exchange Applications, Avianna Elaine Gallegos Dec 2022

Sulfonated Styrene Grafted Sebs/Abs Made By Additive Manufacturing For Ion Exchange Applications, Avianna Elaine Gallegos

Open Access Theses & Dissertations

An interpenetrating polymer network (IPN) for cation exchange applications was synthesized from a blend of styrene-ethylene/butylene-styrene (SEBS) and acrylonitrile butadiene styrene (ABS), which was 3D printed, grafted with crosslinked polystyrene (PS), and sulfonated. A method for styrene grafting was applied to reduce the damage to polymer phases caused by the sulfonation reaction. Styrene and divinylbenzene monomers were introduced to the IPN and induced with heat treatment to polymerize in situ. The graft copolymerization reaction was enhanced with varying quantities of benzoyl peroxide as a chemical initiator. The samples were subsequently sulfonated with chlorosulfonic acid in dichloroethane and functionalized for ion …


Fabrication, Microstructure And Mechanical Characterization Of Crvnbtaw High Entropy Alloy Coatings Using Magnetron Sputtering, Jorge Quezada Dec 2022

Fabrication, Microstructure And Mechanical Characterization Of Crvnbtaw High Entropy Alloy Coatings Using Magnetron Sputtering, Jorge Quezada

Open Access Theses & Dissertations

In this project a CrVNbTaW high entropy alloy was evaluated. The samples were made using radio frequency magnetron sputtering and were made under similar conditions. The deposition parameters were explored to find the ideal deposition process. The process included a pressure from 0.1-2mTorr, 600C, 1 hour duration, at 100W power to guns, and constant argon flow. The samples were fabricated under similar parameters using silicon steel and sapphire substrates. The samples were analyzed and characterized using X-ray diffraction, scanning electron microscopy, atomic force microscopy, nanoindentation and corrosion testing. Based on these results we were able to get a better understanding …


Using Ultrasonication For The Improvement Of Grade And Recovery In Molybdenum Sulfide Flotation, Wayne Alexander Campbell Dec 2022

Using Ultrasonication For The Improvement Of Grade And Recovery In Molybdenum Sulfide Flotation, Wayne Alexander Campbell

Open Access Theses & Dissertations

Experimentation was performed on molybdenite slurry by using ultrasonication to elucidate the effects of ultrasonic-induced bubble cavitation on the grade, recovery, and gangue reduction during small-scale flotation tests and was followed by a topographical analysis of quartz particles using SEM. Ultrasonic waves at 20-80 kHz that propagate through a liquid medium cause microbubbles to form, grow, and implode. The cavitation bubble's implosion causes brief extreme local conditions where temperatures can reach 5,000 K and pressures of 1,000 bar. The resulting microjets create mechanical and chemical changes to the system and were directed at improving flotation dynamics in these experiments. Through …


Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun Dec 2022

Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun

Open Access Theses & Dissertations

Scrutinizing the remarkable and tunable properties of magnetic materials at a nanoscale size "There's Plenty of Room at the Bottom..." Richard Feynman, this study attempts to find sustainable solutions to some of the deteriorating environmental, health, and energy problems the world is encountering. Due to their simple preparation, surface adaptability, and tunable magnetic and optical properties, magnetic nanoparticles have been extensively investigated in water treatment, cancer therapy, data storage, and more. However, relying on non-reusable and chemical-based treatment agents in water, complex and costly cancer treatment procedures and molecular magnets that operate far below room temperature limited those attempts from …


The Qualification Of Sealability And Creep Relaxation Of Additively Manufactured Zytel Gaskets For Pem Fuel Cells, Robert Lazarin Dec 2022

The Qualification Of Sealability And Creep Relaxation Of Additively Manufactured Zytel Gaskets For Pem Fuel Cells, Robert Lazarin

Open Access Theses & Dissertations

The purpose of this thesis is to study the feasibility of low-cost additive manufacturing of gaskets for proton exchange membrane fuel cells exposed to extreme temperature conditions ranging from -55°C to 100°C. With the growing popularity and decreasing costs of additive manufacturing technologies, specifically Material Extrusion (ME), research is being conducted to determine the feasibility of ME components. Thermally cycled PEMFCs may exhibit accelerated gasket deterioration, therefore, the mechanical stability of material extruded gaskets following a harsh thermal cycle must be assessed. The feasibility of the material extruded gaskets will be proven by manufacturing optimization and mechanical testing. The target …


Magnetic Structures Of Sawtooth Olivines Mn2six 4 (X = S, Se) Determined Through Neutron Powder Diffraction, Melaku Sisay Tafere Dec 2022

Magnetic Structures Of Sawtooth Olivines Mn2six 4 (X = S, Se) Determined Through Neutron Powder Diffraction, Melaku Sisay Tafere

Open Access Theses & Dissertations

In olivine chalcogenide Mn2SiX 4 (X = S, Se) compounds, the Mn lattice produces a sawtooth, which is of critical significance in magnetism due to the potential for manifesting at bands in the magnon spectrum, a crucial component in magnonics. The compounds Mn2SiS4 and Mn2SiSe4 in Mn2SiX 4 family undergo antiferromagnetic phase transitions at T â?? 85 K and â?? 66 K, respectively, as determined from the specific heat, Cp(T). The average and local crystal structuresare determined using synchrotron X-ray, neutron diffraction, and X-ray total scattering data followed by Rietveld and pair distribution function (PDF) analysis. It is found from …


A Comparative Evaluation Of Oxidation And Combustion Phenomena In Ti-6al-4v Exposed To Earth Re-Entry And Arc-Jet Test Environments, Arlene Smith Dec 2022

A Comparative Evaluation Of Oxidation And Combustion Phenomena In Ti-6al-4v Exposed To Earth Re-Entry And Arc-Jet Test Environments, Arlene Smith

Open Access Theses & Dissertations

The Ti-6Al-4V alloy is widely used in aerospace applications for its beneficial combination of properties. However, this alloy has high solubility for oxygen and thus a high reactivity. Recovered data contained within the Columbia artifacts suggests that this alloy underwent an accelerated degradation and combustion reaction when exposed to the high enthalpy, low-pressure surroundings experienced during reentry into Earth's atmosphere. Arc-jet testing has provided a simulated aerothermodynamic heating environment to mimic what the spacecraft endured. When the effect of thermal alteration on this alpha-beta phase alloy was investigated during previous studies, optical metallography and microhardness tests revealed inconsistencies between samples …


Novel Interlaminar Reinforcement To Enhance The Impact Damage Resistance Of Carbon Fiber-Reinforced Polymer Matrix Composites, Daisy Haidee Mariscal Dec 2022

Novel Interlaminar Reinforcement To Enhance The Impact Damage Resistance Of Carbon Fiber-Reinforced Polymer Matrix Composites, Daisy Haidee Mariscal

Open Access Theses & Dissertations

Aerospace, aircraft, marine, and automobile applications are increasingly using composite materials for lighter, higher stiffness, and strength properties. Despite these advantages, composite materials have one major disadvantage. The through-thickness properties are extremely weak when subjected to impact damage. When a composite material is subjected to a low-velocity impact, there is hardly any visible damage on the surface compromising the composite material internally without any external notice. Internal damage may be delamination, which is the most common, matrix cracking, and fiber breakage. A composite material is made up of layers of fiber. The interlaminar region is located in between these layers. …


Laser Powder Bed Fusion Process, Structure, And Properties: Holistic Approach To Establishing Metallurgical Quality, Hunter Taylor Dec 2022

Laser Powder Bed Fusion Process, Structure, And Properties: Holistic Approach To Establishing Metallurgical Quality, Hunter Taylor

Open Access Theses & Dissertations

The advent of metal additive manufacturing (AM) was posed as a disruption to casting, forging, machining, and forming with the notion "complexity is free". However, since invention in the late 1990's the marketed potential has not been realized. Metal based AM is best viewed from the process-structure-properties-performance (PSPP) paradigm taught in material science and engineering, which links the process history to the part performance. Understanding the complex and localized process control made available by AM creates a significant challenge in defining the materials structure, properties, and performance. The lack of holistic understating of inputs and corresponding results has been identified …


Characterization Of 3d Stereolithography (Sla) Printed Polymer For Autonomous-Flow Microfluidic Devices, Michelle Gamboa Aug 2022

Characterization Of 3d Stereolithography (Sla) Printed Polymer For Autonomous-Flow Microfluidic Devices, Michelle Gamboa

Open Access Theses & Dissertations

3D Stereolithography (SLA) printing is a high-throughput, precise and reproducible manufacturing platform which makes it a desirable technique to develop microfluidic devices for bioanalytical applications. However, limited information exists regarding the physical, chemical, and biological properties of the polymer resins used in 3D SLA printing. This project demonstrates the characterization of a commercially available 3D SLA printed resin polymer used to develop an autonomous-flow (self-driven) microfluidic device. In this investigation, time-dependent materials characterization was done on the Formlabs clear V4 resin to observe changes in mechanical and surface properties. The clear, printed polymer was analyzed with attenuated total reflectance (ATR), …


Pressure-Induced Phase Transition And Electronic Structure Changes In Equiatomic Fev, Homero Reyes Pulido Aug 2022

Pressure-Induced Phase Transition And Electronic Structure Changes In Equiatomic Fev, Homero Reyes Pulido

Open Access Theses & Dissertations

Classical molecular dynamics methods can accurately describe a broad set of many-atomssystems. Although more economical, the results given by this framework lack the precision capable of density functional theory (DFT). Therefore, the structural stability of the B2 phase of a body-centered-cubic iron-vanadium (FeV) alloy using DFT on the electronic structure level is analyzed to verify and further explain classical results obtained by our group in this same alloy. Using Quantum Espresso and Phonopy for the computational simulations, the plotted band structure, electronic density of states (eDOS), phonon dispersions, charge density, and Fermi surfaces for various compressed unit cells are presented. …


Reflectance Spectral Characterization And Taxonomy Applications Of Spacecraft Materials To Aid Space Situational Awareness, Jacqueline Andrea Reyes Aug 2022

Reflectance Spectral Characterization And Taxonomy Applications Of Spacecraft Materials To Aid Space Situational Awareness, Jacqueline Andrea Reyes

Open Access Theses & Dissertations

The increasing number of space missions involving successfully deployed spacecraft have resulted in an augmented density of artificial objects positioned in orbital domains near Earth. With this steady accumulation of objects in space, it has become increasingly imperative to characterize spacecraft materials, which may ultimately be contributors to the orbital debris population. In an effort to identify unique material-specific spectroscopic markers, a variety of spacecraft materials frequently utilized in the aerospace industry to construct typical spacecraft were analyzed using reflectance spectroscopy as a characterization technique for assessment on material type according to optical features. This is significant in providing information …


Suitability Of Low-Cost Additive Manufacturing For Polymer Electrolyte Fuel Cells, David Alexander May 2022

Suitability Of Low-Cost Additive Manufacturing For Polymer Electrolyte Fuel Cells, David Alexander

Open Access Theses & Dissertations

The purpose of this dissertation is to study the feasibility of low-cost additive manufacturing to fabricate polymer electrolyte fuel cell bipolar plate materials. Traditional manufacturing techniques include molding, milling, hollow embossing, hydro-forming, rolling, and electromagnetic forming. These processes are employed when a design has been selected due to higher costs at low volumes. The combination of high initial costs and bipolar plates being the most expensive component of the polymer electrolyte fuel cell creates incentive to mitigate this obstacle. The feasibility of low-cost additive manufactured bipolar plates will be proven by fabrication, post-processing, and characterization of printed test specimen. The …


Rational Design Of Composite Nanomaterials For Water Treatment Applications, Mariana Marcos-Hernandez May 2022

Rational Design Of Composite Nanomaterials For Water Treatment Applications, Mariana Marcos-Hernandez

Open Access Theses & Dissertations

Water quantity and quality have been affected in communities all around the world due to population growth, pollution, changes in land use, and climate change. In order to cope with existing and anticipated water demands and shortages, the use of treated or reclaimed water is an ongoing alternative that has helped communities all over the world address this problem. The adaptation of nanotechnology to traditional water and wastewater treatment processes offers new opportunities in technological developments. Unique size-dependent properties such as: high surface to mass ratio, high reactivity, high sorption capacities, fast dissolution, superparamagnetism, among others, provide high-tech efficient materials …


Phonon Thermodynamics Of Bcc Zirconium With Machine Learning, Vanessa Judith Meraz May 2022

Phonon Thermodynamics Of Bcc Zirconium With Machine Learning, Vanessa Judith Meraz

Open Access Theses & Dissertations

First principles-based simulations have allowed us to explore emerging phenomena in a variety of systems. Its steadfast practicality has led to an increase in molecular and materials design ranging from drug discovery to planetary formation. However ubiquitous in its field, one of its biggest drawbacks is its computational cost, notably so in molecular dynamics simulations. To counter this setback, there have been many leading efforts in machine learning methods, whether it be in algorithms or network architectures. Our contribution uses an active learning algorithm paired with a tensor field network, e3nn. By steadily feeding new data points to our model, …


Evolution Of The Magnetic Properties On Van Der Waals Layered Magnets Via Pressure And Proton Irradiation, Rubyann Olmos May 2022

Evolution Of The Magnetic Properties On Van Der Waals Layered Magnets Via Pressure And Proton Irradiation, Rubyann Olmos

Open Access Theses & Dissertations

Probing the magnetism in quasi two-dimensional materials has the potential in driving their properties towards future use in spin electronic based devices. Studying such layered magnets will enable the scientific community to uncover tunable exotic phases such as superconductivity, quantum paramagnetism, etc. This work examines the influence of two types of external perturbations, namely, the pressure and proton irradiation, on the magnetic properties of several compounds in the van der Waals crystal family.

Pressure has been found to induce structural and magnetic phase transitions in many of these materials. Using hydrostatic pressure as a disorderless approach to manipulate the interlayer …


Material Synthesis And Machine Learning For Additive Manufacturing, Jaime Eduardo Regis May 2022

Material Synthesis And Machine Learning For Additive Manufacturing, Jaime Eduardo Regis

Open Access Theses & Dissertations

The goal of this research was to address three key challenges in additive manufacturing (AM), the need for feedstock material, minimal end-use fabrication from lack of functionality in commercially available materials, and the need for qualification and property prediction in printed structures. The near ultraviolet-light assisted green reduction of graphene oxide through L-ascorbic acid was studied with to address the issue of low part strength in additively manufactured parts by providing a functional filler that can strengthen the polymer matrix. The synthesis of self-healing epoxy vitrimers was done to adapt high strength materials with recyclable properties for compatibility with AM …


Ultrahigh Strength-High Ductility Combination Low Density Austenitic Steel: Effect Of Aging Temperature And Strain Rate, Jaehyun Kim May 2022

Ultrahigh Strength-High Ductility Combination Low Density Austenitic Steel: Effect Of Aging Temperature And Strain Rate, Jaehyun Kim

Open Access Theses & Dissertations

The objective of the study was to optimize the post-thermal treatment of hot rolled Fe-0.92C-26.3Mn-8.79Al-0.05Nb steel. In this regard, the hardness of the experimental steel was studied as a function of aging time and/or strain rate. The study provided an understanding of aging heat treatment for the experimental steel, which was processed by vacuum induction melting, followed by thermo-mechanical rolling involving multiple passes. The rolled steel was subsequently annealed at 900 °C for 4 h followed by water quenching. X-ray diffraction in scanning mode of 2¸=20-100o indicated the presence of austenite structure. In order to study the influence of aging …


Investigation Of Refractory High Entropy Alloys For Extreme Environment Applications, Rebecca Alexandra Romero May 2022

Investigation Of Refractory High Entropy Alloys For Extreme Environment Applications, Rebecca Alexandra Romero

Open Access Theses & Dissertations

High entropy alloys (HEAs) have emerged as an exciting class of materials with the potential for a wide range of structural, high-temperature applications. HEAs may be defined on a compositional basis as five or more principal elements in equimolar ratios. This definition led to the term “high entropy” due to the high configurational entropy which is obtained with principal elements in these amounts. The combination of elements has contributed to materials that may favor solid-solution phases over intermetallic phases and have the potential to possess highly desired material properties including high yield and creep strength. The inclusion of refractory metals …