Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws Aug 2022

Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws

Doctoral Dissertations

Bottlebrush polymers are a class of highly branched polymers consisting of polymeric side chains that are densely grafted to a linear backbone. Their highly branched architecture results in surface enrichment across a broad range of materials. The goal of my research has been centered around the design of functional bottlebrush polymers and their use as surface active additives in blend films and coatings.

In the first chapter, we examine the segregation behavior of polystyrene bottlebrushes that are blended with linear polystyrene. We systematically vary the lengths of the bottlebrush backbone (Nb), side-chain (Nsc), and the linear matrix (Nm) in order …


Cmos Compatible Carbonization Of Polymer For Elctrochemical Sensors, Mohammad Aminul Haque May 2022

Cmos Compatible Carbonization Of Polymer For Elctrochemical Sensors, Mohammad Aminul Haque

Doctoral Dissertations

Carbon-based electrodes that are integrable with CMOS readout electrodes possess great potential in a wide range of cutting-edge applications. The primary scientific contribution is the development of a processing sequence which can be implemented on CMOS chips to fabricate pyrolyzed carbon microelectrodes from 3D printed polymer microstructures to develop lab-on-CMOS monolithic electrochemical sensor systems. Specifically, optimized processing conditions to convert 3D printed polymer micro- and nano-structures to carbonized electrodes have been explored in order to obtain sensing electrodes for lab-on- CMOS electrochemical systems. Processing conditions have been identified, including a sequel of oxidative and inert atmosphere anneals to form pyrolyzed …


Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova May 2021

Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova

Doctoral Dissertations

Bio-based plastics and composites have seen increased industry adoption in recent years due to growing demand for materials with a low carbon footprint. The use of lignin as a feedstock for polymers has seen growing interest as the concept of an integrated cellulosic biorefinery gains traction and advances the need to use all components of separated biomass for value-added applications. Historically, use of lignin in thermoplastic and elastomeric copolymers and blends has been bottlenecked by the inability to introduce lignin content above 30 weight percent due to difficulties with interfacial adhesion of lignin with other soft segments. Efforts to overcome …


Effect Of Crosslinking On Carbon Nanotube Materials Through Chemical Treatment And Irradiation, Xinyi Lu May 2017

Effect Of Crosslinking On Carbon Nanotube Materials Through Chemical Treatment And Irradiation, Xinyi Lu

Doctoral Dissertations

Carbon nanotubes (CNTs) exhibit a variety of exceptional properties, especially their ultrahigh tensile strength on the order of 100GPa show promise for constituting the next-generation carbon fiber. However, challenges remain to translate these properties into useful technology, primarily due to the sliding of the tubes past one another under tensile loading. The work presented in this dissertation is focused on enhancing the interaction between the CNTs and their bundles in a macro-assembly, in order to improve the tensile properties of the material.

Applying inter-tube crosslinks has been predicted to significantly enhance the stress transfer between the CNT components. We developed …


Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers Dec 2016

Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers

Doctoral Dissertations

Organic photovoltaic devices have been extensively studied as a means to produce sustainable energy. However, the performance of organic-photovoltaic (OPV) devices is dependent upon a number of factors including the morphology of the active layer, device architecture, and processing conditions. Recent research has indicated that fullerenes in the bulk heterojunction are entropically driven to the silicon and air interfaces upon crystallization of P3HT, which occurs during thermal annealing. The first chapter of this research focuses on investigating the structure and function of end-tethered poly(3-hexylthiophene) chains to a transparent electrode as an anode buffer layer. Neutron reactivity reveals that these P3HT …


Mass And Charge Transport In Hydrated Polymeric Membranes, Marshall T. Mcdonnell Aug 2016

Mass And Charge Transport In Hydrated Polymeric Membranes, Marshall T. Mcdonnell

Doctoral Dissertations

Mass and charge transport through hydrated polymer membranes has significant importance for many areas of engineering and industry. Multi-scale modeling and simulation techniques were used to study transport in relation to two specific membrane applications: (1) food packaging and (2) additives for polymer electrolytes.

Chitosan/chitin films were studied due to their use as a sustainable, biodegradable food packaging film. The effects of hydration on the solvation, diffusivity, solubility, and permeability of oxygen molecules in these films were studied via molecular dynamics and confined random walk simulations. With increasing hydration, the membrane was observed to have a more homogeneous water distribution …


Magnetic, Optical And Electrical Properties Of Electron-Hole Pairs In Polymer And Organo-Metal Halide Perovskite Photovoltaic Cells, Yu-Che Hsiao May 2016

Magnetic, Optical And Electrical Properties Of Electron-Hole Pairs In Polymer And Organo-Metal Halide Perovskite Photovoltaic Cells, Yu-Che Hsiao

Doctoral Dissertations

Organic polymer and organo-metal halide perovskite (OMHP) materials have attracted extensive attention during the past decade due to their various applications, like solar cells, light emitting diode, even lasing action (OMHP). Especially, the organo-metal halide perovskite solar cell shows a remarkable power conversion efficiency of about 20%, which is comparable to the amorphous silicon solar cell. Therefore, OMHP solar cell had been considered as a promising substitution for the next generation of renewable energy source. The OMHP materials contain both advantages of organic and inorganic semiconductors, like solution processable thin film fabrication, long-range ambipolar transport characteristics, high dielectric constants, low …


Synthesis And Characterizations Of Stimuli-Responsive Polymeric Materials For Biomedical Applications, Shuangcheng Tang Dec 2015

Synthesis And Characterizations Of Stimuli-Responsive Polymeric Materials For Biomedical Applications, Shuangcheng Tang

Doctoral Dissertations

Stimuli-responsive polymeric materials have been now widely researched toward the biomedical applications including therapeutic delivery, bio-sensor surface modification, and tissue-engineering, etc., considering their desirable biocompatibility, tunable properties, and sensitivity toward physiological stimuli. Beyond the monoresponsive materials, polymers with responsiveness simultaneously toward multiple stimuli are paid great attention to because the control of responsive behaviors could be achieved at a more accurately and delicately level in a complex local environment. However, many challenges still exist such as maintaining integrity of the structure, shaping the morphology at micro- and macro-scale, and regulating a controllable and predictable transition behavior.

The objectives of this …


Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell Aug 2014

Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell

Doctoral Dissertations

Flory-Huggins Theory has been the basis for understanding polymer solvent and blended polymer thermodynamics for much of the last 60 years. Within this theory, a parameter (χ) [chi] was included to quantify the enthalpic energy of dispersion between distinct components. Thin film self-assembly of polymer melts and block copolymers depends critically on this parameter, and in application, χ has generally been assumed to be independent of the concentrations of the individual components of the system. However, Small-Angle Neutron Scattering data on isotopic polymer blends, such as polyethylene and deuterated polyethylene, have shown a roughly parabolic concentration dependency for …


The Effect Of Processing Parameters On Barrier Properties Of Polymers, Russell Louis Hallman Jr. Aug 2013

The Effect Of Processing Parameters On Barrier Properties Of Polymers, Russell Louis Hallman Jr.

Doctoral Dissertations

The intent of this work was to learn if polyethylene could be made with predictable water transfer rates by control of the microstructure. A series of films were formed from three different polyethylenes with a range crystallinities using melt pressing, a controlled cooling rate, and subsequent heat treatments. The samples were tested on a novel device called the polymer characterization device that measures the water transfer flux as a function of temperature. The samples’ morphology was examined using differential gradient column, differential scanning calorimetry, Fourier transform infrared microscopy, wide-angle X-ray diffractions, small-angle X-ray scattering, and small angle light scattering, and …


Tuning Cell Fate On Self-Assembled Structures, Xiaohui Wu Aug 2013

Tuning Cell Fate On Self-Assembled Structures, Xiaohui Wu

Doctoral Dissertations

This dissertation presents novel biodegradable copolymers with dendritic architecture, classic polymers, and inorganic materials with controlled surface topography, stiffness, and surface energy for investigating cell-material interactions and targeting tissue engineering applications. Chapter I reviews the recent progress in bone and nerve regeneration, the key factors of materials influencing cell-material interaction, and self-assembled polymer structures. Chapter II presents a divergent method to synthesize biodegrable com-dendritic tri-block copolymers consisting of poly(ethylene glycol) and poly(L-lactide) or poly(ε-caprolactone) and the MC3T3-E1 cell response to their spherulites. Chapter III presents the fabrication of deformable poly(ε-caprolactone) honeycomb films prepared via a surfactant-free breath figure method in …


Melt Blown Poly(Lactic Acid) For Application As A Tissue Engineering Scaffold, William Horst Gazzola Dec 2012

Melt Blown Poly(Lactic Acid) For Application As A Tissue Engineering Scaffold, William Horst Gazzola

Masters Theses

Poly(lactic acid) (PLA) was melt blown (MB) under varying processing conditions to create webs with micro and nano-architecture. Processing parameters varied were primary air flow rate and collector distance. In total, twenty-one webs were produced and the physical properties of the webs were investigated including, mean fiber diameter and fiber diameter distribution, mean pore diameter and pore size distribution, web thickness, degree of crystallinity, tensile modulus and degradation rate. Four webs, two with micro and two with nano-architecture, thought suitable for use as tissue engineering scaffolds were selected for seeding with A375 human malignant melanoma cells. Cell culture was conducted …


Multi-Scale Modeling Of Polymeric Materials: An Atomistic And Coarse-Grained Molecular Dynamics Study, Qifei Wang Aug 2011

Multi-Scale Modeling Of Polymeric Materials: An Atomistic And Coarse-Grained Molecular Dynamics Study, Qifei Wang

Doctoral Dissertations

Computational study of the structural, thermodynamic and transport properties of polymeric materials at equilibrium requires multi-scale modeling techniques due to processes occurring across a broad spectrum of time and length scales. Classical molecular-level simulation, such as Molecular Dynamics (MD), has proved very useful in the study of polymeric oligomers or short chains. However, there is a strong, nonlinear dependence of relaxation time with respect to chain length that requires the use of less computationally demanding techniques to describe the behavior of longer chains. As one of the mesoscale modeling techniques, Coarse-grained (CG) procedure has been developed recently to extend the …


Roles Of Polymer Crosslinking Density And Crystallinity In Regulating Surface Characteristics And Pre-Osteoblastic Mc3t3 Cell Behavior, Kan Wang Aug 2011

Roles Of Polymer Crosslinking Density And Crystallinity In Regulating Surface Characteristics And Pre-Osteoblastic Mc3t3 Cell Behavior, Kan Wang

Doctoral Dissertations

This dissertation presents material design strategies to investigate cell-biomaterial interactions on specific biocompatible polymers and polymer blends by using mouse pre-osteoblastic MC3T3 cells aiming for potential applications in bone tissue engineering. Chapter 1 reviews some related background knowledge including polymeric biomaterials for tissue engineering, cell-biomaterial interaction, synthetic photo-crosslinkable and degradable polymers, and the effect of surface features on osteoblast cell responses. Chapter 2 presents photo-crosslinkable composites of poly(propylene fumarate) (PPF), an injectable and biodegradable polyester, and methacryl-polyhedral oligomeric silsesquioxane (mPOSS), which has eight methacryl groups tethered with a cage-like hybrid inorganic-organic nanostructure, for bone tissue engineering applications. Blending mPOSS with …