Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Development Of Codoped Cesium Iodide Scintillators For Medical Imaging Applications, Everett M. Cavanaugh May 2022

Development Of Codoped Cesium Iodide Scintillators For Medical Imaging Applications, Everett M. Cavanaugh

Masters Theses

Cesium iodide has a rich history of use as a scintillating material. CsI finds use in a variety of fields, but it is primarily used in radiography, tomography, and geological exploration. Of the three common variants of CsI, thallium doped CsI is by far the most widely used among these applications. It possesses favorable physical characteristics like a high density and high effective Z and exhibits high light output at room temperature. Despite how great CsI scintillators may be on paper, they have an Achilles heel: afterglow. CsI:Tl has significant afterglow which leads to imaging artifacts that can be difficult …


Doping Of Fluorchlorozirconate And Borate-Silica Glass Ceramics For Medical Imaging And Fast Neutron Scintillation, Julie Elizabeth Swafford May 2015

Doping Of Fluorchlorozirconate And Borate-Silica Glass Ceramics For Medical Imaging And Fast Neutron Scintillation, Julie Elizabeth Swafford

Masters Theses

Borate silica glass ceramics were produced for neutron scintillation. The Glass ceramics were doped with europium fluoride [EuF2] and cerium chloride [CeCl3]. Isotopic lithium fluoride [6LiF] and boron oxide [10B2O3] were used in most samples while non-isotopic lithium fluoride [LiF] and boron oxide [ B2O3] were used in the rest. When exposed to a neutron beam, samples doped with europium fluoride [EuF2] scintillated while samples doped with cerium chloride [CeCl3] did not. This contradicts current literature on fast scintillation. What …


Zone Refining Of Raw Materials For Metal Halide Scintillator Crystal Growth, Thomas Williams Mcalexander Dec 2014

Zone Refining Of Raw Materials For Metal Halide Scintillator Crystal Growth, Thomas Williams Mcalexander

Masters Theses

In recent years, scintillators have been researched for homeland security applications where properties such as high light output and low energy resolution are required for efficient gamma ray spectroscopy. Several promising scintillators, including SrI2 [Strontium Iodide], CsSrI3 [Cesium Strontium Iodide], and KSr2I5 [Potassium Strontium Iodide] are activated with EuI2 [Europium Iodide]. The quality of EuI2 raw material is generally poor and inconsistent as-received from the manufacturer. Material purity is known to affect its scintillation performance, and so purification processes have been investigated to improve the performance of Eu-doped [Europium-doped] scintillators. In this …


Spectroscopic, Thermal, And Physical Analysis Of The Raw Materials In Europium Doped Cesium Strontium Iodide Scintillator, Bonnie Dell Blalock Dec 2013

Spectroscopic, Thermal, And Physical Analysis Of The Raw Materials In Europium Doped Cesium Strontium Iodide Scintillator, Bonnie Dell Blalock

Masters Theses

Scintillators are widely used in homeland security applications that utilize gamma-ray spectroscopy. An ideal scintillator for this purpose should possess a high effective atomic number, high light yield, and good energy resolution. The scintillator CsSrI3: Eu [cesium strontium iodide: europium], recently developed at the Scintillation Materials Research Center, has excellent properties. Recent efforts have been made to evaluate the basic thermal properties and IR spectra of the compound’s raw materials as part of a project to improve the quality of grown crystals. Fourier transform infrared spectroscopy of high purity anhydrous CsI [cesium iodide], SrI2 [strontium iodide], and …