Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nebraska - Lincoln

Biomedical Engineering and Bioengineering

Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 655

Full-Text Articles in Engineering

Surface Antibody Changes Protein Corona Both In Human And Mouse Serum But Not Final Opsonization And Elimination Of Targeted Polymeric Nanoparticles, Sara Capolla, Federico Colombo, Luca De Maso, Prisca Mauro, Paolo Bertoncin, Thilo Kähne, Alexander Engler, Luis Núñez, Gustavo Larsen, Et Al. Dec 2023

Surface Antibody Changes Protein Corona Both In Human And Mouse Serum But Not Final Opsonization And Elimination Of Targeted Polymeric Nanoparticles, Sara Capolla, Federico Colombo, Luca De Maso, Prisca Mauro, Paolo Bertoncin, Thilo Kähne, Alexander Engler, Luis Núñez, Gustavo Larsen, Et Al.

Department of Chemical and Biomolecular Engineering: Faculty Publications

Background: Nanoparticles represent one of the most important innovations in the medical field. Among nanocarriers, polymeric nanoparticles (PNPs) attracted much attention due to their biodegradability, biocompatibility, and capacity to increase efficacy and safety of encapsulated drugs. Another important improvement in the use of nanoparticles as delivery systems is the conjugation of a targeting agent that enables the nanoparticles to accumulate in a specific tissue. Despite these advantages, the clinical translation of therapeutic approaches based on nanoparticles is prevented by their interactions with blood proteins. In fact, the so-formed protein corona (PC) drastically alters the biological identity of the particles. Adsorbed …


Exploring The Use Of Virtual Reality In Designing And Prototyping Medical Devices, Evan Marsh Jun 2023

Exploring The Use Of Virtual Reality In Designing And Prototyping Medical Devices, Evan Marsh

Honors Theses

A degree in engineering is highly sought after in the United States. Despite the grueling coursework and sacrifices involved in earning an engineering degree, the rewards after college are numerous. However, the engineering field is vast, and the degree obtained is not always the profession followed in industry. A lot of what we learn in the college of engineering is very broad and surface-level. It is worth noting that only about 10% of what engineering students learn in school is applicable in the workplace, but they wish they had learned a lot more about that 10%.


Protocol To Develop A Synthetic Biology Toolkit For The Non-Model Bacterium R. Palustris, Mark Kathol, Cheryl Immethun, Rajib Saha Jun 2023

Protocol To Develop A Synthetic Biology Toolkit For The Non-Model Bacterium R. Palustris, Mark Kathol, Cheryl Immethun, Rajib Saha

Department of Chemical and Biomolecular Engineering: Faculty Publications

Numerous biology tools are developed to work for model organisms, which, however, do not work effectively in non-model organisms. Here, we present a protocol for developing a synthetic biology toolkit for Rhodopseudomonas palustris CGA009, a non-model bacterium with unique metabolic properties. We describe steps for introducing and characterizing biological devices in nonmodel bacteria, such as the utilization of fluorescence markers and RT-qPCR. This protocol may also be applicable for other non-model organisms. For complete details on the use and execution of this protocol, please refer to Immethun et al..1


Blood Flow Regulates Atherosclerosis Progression And Regression, Morgan A. Schake May 2023

Blood Flow Regulates Atherosclerosis Progression And Regression, Morgan A. Schake

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Atherosclerosis is the most prevalent pathology of cardiovascular disease with no known cure. Despite the many systemic risk factors for atherosclerosis, plaques do not form randomly in the vasculature. Instead, they form around bifurcations and the inner curvature of highly curving arterial segments that contain so-called disturbed blood flow that is low in magnitude and multidirectional over the cardiac cycle. Conversely, straight, non-bifurcated arterial segments that contain moderate-to-high and unidirectional (i.e., normal) blood flow are protected from plaque development. Thus, blood flow is a key regulator of atherosclerosis that may be able to be leveraged to develop new therapeutics. Towards …


Mitochondrial Complex Iii Bypass Complex I To Induce Ros In Gpr17 Signaling Activation In Gbm, Sana Kari, Jeyalakshmi Kandhavelu, Akshaya Murugesan, Ramesh Thiyagarajan, Srivatsan Kidambi, Meenakshisundaram Kandhavelu Apr 2023

Mitochondrial Complex Iii Bypass Complex I To Induce Ros In Gpr17 Signaling Activation In Gbm, Sana Kari, Jeyalakshmi Kandhavelu, Akshaya Murugesan, Ramesh Thiyagarajan, Srivatsan Kidambi, Meenakshisundaram Kandhavelu

Department of Chemical and Biomolecular Engineering: Faculty Publications

Guanine nucleotide binding protein (G protein) coupled receptor 17 (GPR17) plays crucial role in Glioblastoma multiforme (GBM) cell signaling and is primarily associated with reactive oxidative species (ROS) production and cell death. However, the underlying mechanisms by which GPR17 regulates ROS level and mitochondrial electron transport chain (ETC) complexes are still unknown. Here, we investigate the novel link between the GPR17 receptor and ETC complex I and III in regulating level of intracellular ROS (ROSi) in GBM using pharmacological inhibitors and gene expression profiling. Incubation of 1321N1 GBM cells with ETC I inhibitor and GPR17 agonist decreased the ROS level, …


A Device For Measuring Acoustic Output Intensity Of Transcranial Doppler Ultrasound Transducers For Comparison With Fda Regulations, Sarah Altman, Gregory Bashford, Benjamin Hage Apr 2023

A Device For Measuring Acoustic Output Intensity Of Transcranial Doppler Ultrasound Transducers For Comparison With Fda Regulations, Sarah Altman, Gregory Bashford, Benjamin Hage

Honors Theses

Transcranial Doppler Ultrasonography (TCD) is a non-invasive methodology which can evaluate cerebral blood flow velocity in real time. Single-element focused circular transducers placed on the scalp produce ultrasound waves capable of penetrating the skull with minimal aberration, enabling measurement of the Doppler shift. As such, TCD can measure blood flow velocity in the internal carotid and vertebral arteries, as well as the arteries of the Circle of Willis: the Anterior Cerebral (ACA), Posterior Cerebral (PCA), and Middle Cerebral Arteries (MCA). Intracranial aneurysm and ischemic stroke are serious conditions in which ballooning or occlusion of cerebral vessels cause insufficient perfusion, leading …


Protocol To Engineer Nanofilms Embedded Lipid Nanoparticles For Controlled And Targeted Drug Delivery (Nectar), Rashi Porwal, Stephen L. Hayward, Srivatsan Kidambi Mar 2023

Protocol To Engineer Nanofilms Embedded Lipid Nanoparticles For Controlled And Targeted Drug Delivery (Nectar), Rashi Porwal, Stephen L. Hayward, Srivatsan Kidambi

Department of Chemical and Biomolecular Engineering: Faculty Publications

We present a protocol to engineer a substrate-mediated delivery platform comprising hyaluronic acid-coated lipid nanoparticles (HALNPs) embedded into polyelectrolyte multilayer (PEM) films. This platform allows controlled spatiotemporal release of lipid nanoparticles (LNP) by embedding them within the polyelectrolyte multilayer films matrix. HALNP conjugate with antibodies also adds the ability for targeted delivery. The use of LNP enables this platform to encapsulate both hydrophobic and hydrophilic drugs. This platform can easily be reproduced and utilized for various biomedical drug delivery applications. For complete details on the use and execution of this protocol, please refer to Hayward et al. (2015, 2016a, 2016b), …


Computational Discovery Of Active And Selective Metal- Nitrogen-Graphene Catalysts For Electrooxidation Of Water To H2O2, Payal Chaudhary, Iman Evazzade, Rodion Belosludov,, Vitaly Alexandrov Mar 2023

Computational Discovery Of Active And Selective Metal- Nitrogen-Graphene Catalysts For Electrooxidation Of Water To H2O2, Payal Chaudhary, Iman Evazzade, Rodion Belosludov,, Vitaly Alexandrov

Department of Chemical and Biomolecular Engineering: Faculty Publications

A direct electrosynthesis of H2O2 from either O2 or H2O is an attractive strategy to replace the energy-intensive industrial anthraquinone process. Two-electron water oxidation reaction (2e-WOR) offers several advantages over the oxygen reduction reaction such as better mass transfer due to the absence of gasphase reactants. However, 2e-WOR is a more challenging and less studied process with only a handful of metal oxides exhibiting reasonable activity/selectivity properties. Herein, we employ density-functional-theory calculations to screen a variety of metal-nitrogen-graphene structures for 2e-WOR. As a consequence of scaling between the adsorption energies of reaction intermediates, we …


An Older Diabetes-Induced Mice Model For Studying Skin Wound Healing, Carlos Poblete Jara, Guilherme Nogueira, Joseane Morari, Thaís Paulino Do Prado, Renan De Medeiros Bezerra, Lício A. Velloso, William Velander, Eliana Pereira De Araújo Feb 2023

An Older Diabetes-Induced Mice Model For Studying Skin Wound Healing, Carlos Poblete Jara, Guilherme Nogueira, Joseane Morari, Thaís Paulino Do Prado, Renan De Medeiros Bezerra, Lício A. Velloso, William Velander, Eliana Pereira De Araújo

Department of Chemical and Biomolecular Engineering: Faculty Publications

Advances in wound treatment depend on the availability of animal models that reflect key aspects of human wound healing physiology. To this date, the accepted mouse models do not reflect defects in the healing process for chronic wounds that are associated with type two diabetic skin ulcers. The long term, systemic physiologic stress that occurs in middle aged or older Type 2 diabetes patients is difficult to simulate in preclinical animal model. We have strived to incorporate the essential elements of this stress in a manageable mouse model: long term metabolic stress from obesity to include the effects of middle …


Advancing Ionomer Design To Boost Interfacial And Thin-Film Proton Conductivity Via Styrene-Calix[4]Arene-Based Ionomers, Shyambo Chatterjee, Oghenetega Allen Obewhere, Ehsan Zamani, Rajesh Keloth, Seefat Farzin, Martha D. Morton, Anandakumar Sarella, Shudipto Konika Dishari Feb 2023

Advancing Ionomer Design To Boost Interfacial And Thin-Film Proton Conductivity Via Styrene-Calix[4]Arene-Based Ionomers, Shyambo Chatterjee, Oghenetega Allen Obewhere, Ehsan Zamani, Rajesh Keloth, Seefat Farzin, Martha D. Morton, Anandakumar Sarella, Shudipto Konika Dishari

Department of Chemical and Biomolecular Engineering: Faculty Publications

Sub-micrometer-thick ion-conducting polymer (ionomer) layers often suffer from poor ionic conductivity at the substrate/catalyst interface. The weak proton conductivity makes the electrochemical reaction at the cathode of proton-exchange-membrane fuel cells sluggish. To address this, here we report on a class of polystyrene-based ionomers having sub-nanometer-sized, sulfonated macrocyclic calix[4]arene-based pendants (PS-calix). In films with thickness comparable to that of ionomer-based binder layers, the conductivity of PS-calix film (∼41 mS/cm) is ∼13 times higher than that of the current state-of-the-art ionomer, Nafion. We observe a similar improvement in proton conductivity when PS-calix interfaces with Pt nanoparticles, demonstrating the potential of PS-calix in …


Coupling Atr-Ftir Spectroscopy With Multivariate Analysis For Polymers Manufacturing And Control Of Polymers’ Molecular Weight, Tung Nguyen, Ahmad Arabi Shamsabadi, Mona Bavarian Jan 2023

Coupling Atr-Ftir Spectroscopy With Multivariate Analysis For Polymers Manufacturing And Control Of Polymers’ Molecular Weight, Tung Nguyen, Ahmad Arabi Shamsabadi, Mona Bavarian

Department of Chemical and Biomolecular Engineering: Faculty Publications

Acrylate-based polymers are commonly used in the chemical industry. Consistent manufacturing of these polymers with the help of Process Analytical Technology (PAT) is very desirable. The capability of monitoring polymers’ molecular weight in real-time reduces operation time and eliminates the frequent samplings needed for quality control. Herein, molecular weight (Mw) of glycidyl methacrylate-co-methyl methacrylate (GMA-co- MMA) copolymer was monitored in real-time using mid-infrared ATR-FTIR spectroscopy. The Principal Component Analysis (PCA) and Partial Least Square (PLS) models were then utilized to examine, improve the latent space, and select high-quality spectra. We show that acquiring highly correlated spectra enhances the …


Coupling Nitrate Capture With Ammonia Production Through Bifunctional Redox-Electrodes, Kwiyong Kim, Alexandra Zagalskaya, Jing Lian Ng, Jaeyoung Hong, Vitaly Alexandrov, Tuan Anh Pham, Xiao Su Jan 2023

Coupling Nitrate Capture With Ammonia Production Through Bifunctional Redox-Electrodes, Kwiyong Kim, Alexandra Zagalskaya, Jing Lian Ng, Jaeyoung Hong, Vitaly Alexandrov, Tuan Anh Pham, Xiao Su

Department of Chemical and Biomolecular Engineering: Faculty Publications

Nitrate is a ubiquitous aqueous pollutant from agricultural and industrial activities. At the same time, conversion of nitrate to ammonia provides an attractive solution for the coupled environmental and energy challenge underlying the nitrogen cycle, by valorizing a pollutant to a carbon-free energy carrier and essential chemical feedstock. Mass transport limitations are a key obstacle to the efficient conversion of nitrate to ammonia from water streams, due to the dilute concentration of nitrate. Here, we develop bifunctional electrodes that couple a nitrate-selective redox-electrosorbent (polyaniline) with an electrocatalyst (cobalt oxide) for nitrate to ammonium conversion. We demonstrate the synergistic reactive separation …


Increased Liver Stiffness Promotes Hepatitis B Progression By Impairing Innate Immunity In Ccl4-Induced Fibrotic Hbv+ Transgenic Mice, Grace Bybee, Youra Moeun, Weimin Wang, Kusum K. Kharbanda, Larisa Y. Poluektova, Srivatsan Kidambi, Natalia A. Osna, Murali Ganesan Jan 2023

Increased Liver Stiffness Promotes Hepatitis B Progression By Impairing Innate Immunity In Ccl4-Induced Fibrotic Hbv+ Transgenic Mice, Grace Bybee, Youra Moeun, Weimin Wang, Kusum K. Kharbanda, Larisa Y. Poluektova, Srivatsan Kidambi, Natalia A. Osna, Murali Ganesan

Department of Chemical and Biomolecular Engineering: Faculty Publications

Background: Hepatitis B virus (HBV) infection develops as an acute or chronic liver disease, which progresses from steatosis, hepatitis, and fibrosis to end-stage liver diseases such as cirrhosis and hepatocellular carcinoma (HCC). An increased stromal stiffness accompanies fibrosis in chronic liver diseases and is considered a strong predictor for disease progression. The goal of this study was to establish the mechanisms by which enhanced liver stiffness regulates HBV infectivity in the fibrotic liver tissue. Methods: For in vitro studies, HBV-transfected HepG2.2.15 cells were cultured on polydimethylsiloxane gels coated by polyelectrolyte multilayer films of 2 kPa (soft) or 24 kPa (stiff) …


Mesenchymal Stromal Cells And Alpha-1 Antitrypsin Have A Strong Synergy In Modulating Inflammation And Its Resolution, Li Han, Xinran Wu, Ou Wang, Xiao Luan, William Velander, Michael Aynardi, E. Scott Halstead, Anthony S. Bonavia, Rong Jin, Guohong Li, Yulong Li, Yong Wang, Cheng Dong, Yuguo Lei Jan 2023

Mesenchymal Stromal Cells And Alpha-1 Antitrypsin Have A Strong Synergy In Modulating Inflammation And Its Resolution, Li Han, Xinran Wu, Ou Wang, Xiao Luan, William Velander, Michael Aynardi, E. Scott Halstead, Anthony S. Bonavia, Rong Jin, Guohong Li, Yulong Li, Yong Wang, Cheng Dong, Yuguo Lei

Department of Chemical and Biomolecular Engineering: Faculty Publications

Rationale: Trauma, surgery, and infection can cause severe inflammation. Both dysregulated inflammation intensity and duration can lead to significant tissue injuries, organ dysfunction, mortality, and morbidity. Anti-inflammatory drugs such as steroids and immunosuppressants can dampen inflammation intensity, but they derail inflammation resolution, compromise normal immunity, and have significant adverse effects. The natural inflammation regulator mesenchymal stromal cells (MSCs) have high therapeutic potential because of their unique capabilities to mitigate inflammation intensity, enhance normal immunity, and accelerate inflammation resolution and tissue healing. Furthermore, clinical studies have shown that MSCs are safe and effective. However, they are not potent enough, alone, to …


In Vitro Models For The Study Of Liver Biology And Diseases: Advances And Limitations, Savneet Kaur, Srivatsan Kidambi, Martí Ortega-Ribera, Le Thi Thanh Thuy, Natalia Nieto, Victoria C. Cogger, Wei-Fen Xie, Frank Tacke, Jordi Gracia-Sancho Nov 2022

In Vitro Models For The Study Of Liver Biology And Diseases: Advances And Limitations, Savneet Kaur, Srivatsan Kidambi, Martí Ortega-Ribera, Le Thi Thanh Thuy, Natalia Nieto, Victoria C. Cogger, Wei-Fen Xie, Frank Tacke, Jordi Gracia-Sancho

Department of Chemical and Biomolecular Engineering: Faculty Publications

In vitro models of liver (patho)physiology, new technologies, and experimental approaches are progressing rapidly. Based on cell lines, induced pluripotent stem cells or primary cells derived from mouse or human liver as well as whole tissue (slices), such in vitro single- and multicellular models, including complex microfluidic organ-on-a-chip systems, provide tools to functionally understand mechanisms of liver health and disease. The International Society of Hepatic Sinusoidal Research (ISHSR) commissioned this working group to review the currently available in vitro liver models and describe the advantages and disadvantages of each in the context of evaluating their use for the study of …


Ab Initio Insight Into The Electrolysis Of Water On Basal And Edge (Fullerene C20) Surfaces Of 4 Å Single-Walled Carbon Nanotubes, Zhen Jiang, Nadia N. Intan, Qiong Yang Nov 2022

Ab Initio Insight Into The Electrolysis Of Water On Basal And Edge (Fullerene C20) Surfaces Of 4 Å Single-Walled Carbon Nanotubes, Zhen Jiang, Nadia N. Intan, Qiong Yang

Department of Chemical and Biomolecular Engineering: Faculty Publications

The extreme surface reactivity of 4 Å single-walled carbon nanotubes (SWCNTs) makes for a very promising catalytic material, however, controlling it experimentally has been found to be challenging. Here, we employ ab initio calculations to investigate the extent of surface reactivity and functionalization of 4 Å SWCNTs. We study the kinetics of water dissociation and adsorption on the surface of 4 Å SWCNTs with three different configurations: armchair (3,3), chiral (4,2) and zigzag (5,0). We reveal that out of three different configurations of 4 Å SWCNTs, the surface of tube (5,0) is the most reactive due to its small HOMO–LUMO …


Correlating The Macrostructural Variations Of An Ion Gel With Its Carbon Dioxide Sorption Capacity, Tung Nguyen,, Mona Bavarian, Siamak Nejati Nov 2022

Correlating The Macrostructural Variations Of An Ion Gel With Its Carbon Dioxide Sorption Capacity, Tung Nguyen,, Mona Bavarian, Siamak Nejati

Department of Chemical and Biomolecular Engineering: Faculty Publications

We report on a direct correlation between the macroscale structural variations and the gas sorption capacities of an ion gel. Here, we chose 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide ([Emim][TF2N]) and poly(vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP) as the ionic liquid and host polymer, respectively. The CO2 sorption in the thin films of the IL-polymer was measured using the gravimetric method. The results of our experiment showed that the trend in CO2 uptake of these mixtures was nonlinearly correlated with the content of IL. Here, we highlight that the variations in the molecular structure of the polymers were the main reason behind …


Electrophilic Aldehyde 4-Hydroxy-2-Nonenal Mediated Signaling And Mitochondrial Dysfunction, Sudha Sharma, Papori Sharma, Tara Bailey, Susmita Bhattarai, Utsab Subedi, Chloe Miller, Hosne Ara, Srivatsan Kidambi, Hong Sun, Manikandan Panchatcharam, Sumitra Miriyala Oct 2022

Electrophilic Aldehyde 4-Hydroxy-2-Nonenal Mediated Signaling And Mitochondrial Dysfunction, Sudha Sharma, Papori Sharma, Tara Bailey, Susmita Bhattarai, Utsab Subedi, Chloe Miller, Hosne Ara, Srivatsan Kidambi, Hong Sun, Manikandan Panchatcharam, Sumitra Miriyala

Department of Chemical and Biomolecular Engineering: Faculty Publications

Reactive oxygen species (ROS), a by-product of aerobic life, are highly reactive molecules with unpaired electrons. The excess of ROS leads to oxidative stress, instigating the peroxidation of polyunsaturated fatty acids (PUFA) in the lipid membrane through a free radical chain reaction and the formation of the most bioactive aldehyde, known as 4-hydroxynonenal (4-HNE). 4-HNE functions as a signaling molecule and toxic product and acts mainly by forming covalent adducts with nucleophilic functional groups in proteins, nucleic acids, and lipids. The mitochondria have been implicated as a site for 4-HNE generation and adduction. Several studies clarified how 4-HNE affects the …


Fabricating 3-Dimensional Human Brown Adipose Microtissues For Transplantation Studies, Ou Wang, Li Han, Haishuang Lin, Mingmei Tian, Shuyang Zhang, Bin Duan, Soonkyu Chung, Chi Zhang, Xiaojun Lian, Yong Wang, Yuguo Lei Oct 2022

Fabricating 3-Dimensional Human Brown Adipose Microtissues For Transplantation Studies, Ou Wang, Li Han, Haishuang Lin, Mingmei Tian, Shuyang Zhang, Bin Duan, Soonkyu Chung, Chi Zhang, Xiaojun Lian, Yong Wang, Yuguo Lei

Department of Chemical and Biomolecular Engineering: Faculty Publications

Transplanting cell cultured brown adipocytes (BAs) represents a promising approach to prevent and treat obesity (OB) and its associated metabolic disorders, including type 2 diabetes mellitus (T2DM). However, transplanted BAs have a very low survival rate in vivo. The enzymatic dissociation during the harvest of fully differentiated BAs also loses significant cells. There is a critical need for novel methods that can avoid cell death during cell preparation, transplantation, and in vivo. Here, we reported that preparing BAs as injectable microtissues could overcome the problem. We found that 3D culture promoted BA differentiation and UCP-1 expression, and the optimal initial …


Nonordered Dendritic Mesoporous Silica Nanoparticles As Promising Platforms For Advanced Methods Of Diagnosis And Therapies, S. Malekmohammadi, Riaz Ur Rehman Mohammed, H. Samadian, A. Zarebkohan, A. García-Fernández, G.R. Kokil, F. Sharifi, J. Esmaeili, M. Bhia, M. Razavi, M. Bodaghi, T. Kumeria, R. Martínez-Máñez Aug 2022

Nonordered Dendritic Mesoporous Silica Nanoparticles As Promising Platforms For Advanced Methods Of Diagnosis And Therapies, S. Malekmohammadi, Riaz Ur Rehman Mohammed, H. Samadian, A. Zarebkohan, A. García-Fernández, G.R. Kokil, F. Sharifi, J. Esmaeili, M. Bhia, M. Razavi, M. Bodaghi, T. Kumeria, R. Martínez-Máñez

Department of Chemical and Biomolecular Engineering: Faculty Publications

Dendritic mesoporous silica nanoparticles (DMSNs) are a new generation of porous materials that have gained great attention compared to other mesoporous silicas due to attractive properties, including straightforward synthesis methods, modular surface chemistry, high surface area, tunable pore size, chemical inertness, particle size distribution, excellent biocompatibility, biodegradability, and high pore volume compared with conventional mesoporous materials. The last years have witnessed a blooming growth of the extensive utilization of DMSNs as an efficient platform in a broad spectrum of biomedical and industrial applications, such as catalysis, energy harvesting, biosensing, drug/gene delivery, imaging, theranostics, and tissue engineering. DMSNs are considered great …


Development Of A Decellularized Hydrogel Composite And Its Application In A Novel Model Of Disc-Associated Low Back Pain In Female Sprague Dawley Rats, David Lillyman Jul 2022

Development Of A Decellularized Hydrogel Composite And Its Application In A Novel Model Of Disc-Associated Low Back Pain In Female Sprague Dawley Rats, David Lillyman

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Chronic low back pain is a global socioeconomic crisis compounded by an absence of reliable, curative treatments. The predominant pathology associated with chronic low back pain is degeneration of intervertebral discs in the lumbar spine. During degeneration, nerves can sprout into the intervertebral disc tissue and be chronically subjected to inflammatory and mechanical stimuli, resulting in pain. Pain arising from the intervertebral disc, or disc-associated pain, is a complex, multi-faceted disorder which necessitates valid animal models to screen therapeutics and study pathomechanisms of pain.

While many research teams have created animal models of disc degeneration, the translation of these platforms …


Understanding The Role Of Antioxidant Nanoparticles In Improving The Outcome Of Secondary Injury In Traumatic Brain Injury, Aria W. Tarudji Jul 2022

Understanding The Role Of Antioxidant Nanoparticles In Improving The Outcome Of Secondary Injury In Traumatic Brain Injury, Aria W. Tarudji

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Following traumatic brain injury (TBI), excess reactive oxygen species (ROS) and other free radicals are released, inducing the cascade of secondary injury that exacerbate the outcomes of TBI. Antioxidant nanoparticles (ANPs) have shown promising outcomes in reducing the progression of TBI, which may be due to the higher accumulation and retention of ANPs in the injured brain. However, there is limited knowledge of: 1) antioxidant activities needed in TBI treatment, 2) correlation between longer retention, bioavailability, and target engagement with antioxidant treatments, and 3) sexual dimorphism to ANP treatments.

This dissertation assesses multiple ANPs with various scavenging activities and durations …


Optimization Of A Novel Barnes Maze Protocol For Assessing Antioxidant Treatment Of Traumatic Brain Injury, Connor C. Gee Jul 2022

Optimization Of A Novel Barnes Maze Protocol For Assessing Antioxidant Treatment Of Traumatic Brain Injury, Connor C. Gee

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Current preclinical research into traumatic brain injury focuses heavily upon cellular and molecular testing to determine the effects of injury and potential benefits of neuroprotective treatments. While this may be a useful method, some argue that an increased focus on behavioral testing could lead to better clinical translation as these assays assess the longer term, downstream effects from a brain injury. The most characterized behavioral tests used in traumatic brain injury research are the spatial learning and memory paradigms, Morris Water Maze and Barnes Maze. The Morris Water Maze is the most used of theses paradigms and relies on spatial …


Exploring The Metabolic Landscape Of Pancreatic Ductal Adenocarcinoma Cells Using Genome-Scale Metabolic Modeling, Mohammad Mazharul Islam, Andrea Goertzen, Pankaj K. Singh, Rajib Saha Jun 2022

Exploring The Metabolic Landscape Of Pancreatic Ductal Adenocarcinoma Cells Using Genome-Scale Metabolic Modeling, Mohammad Mazharul Islam, Andrea Goertzen, Pankaj K. Singh, Rajib Saha

Department of Chemical and Biomolecular Engineering: Faculty Publications

Pancreatic ductal adenocarcinoma (PDAC) is a major research focus because of its poor therapy response and dismal prognosis. PDAC cells adapt their metabolism to the surrounding environment, often relying on diverse nutrient sources. Because traditional experimental techniques appear exhaustive to find a viable therapeutic strategy, a highly curated and omics-informed PDAC genome-scale metabolic model was reconstructed using patient-specific transcriptomics data. From the model-predictions, several new metabolic functions were explored as potential therapeutic targets in addition to the known metabolic hallmarks of PDAC. Significant downregulation in the peroxisomal beta oxidation pathway, flux modulation in the carnitine shuttle system, and upregulation in …


Functional Requirements For A Samd14-Capping Protein Complex In Stress Erythropoiesis, Suhita Ray, Linda Chee, Yichao Zhou, Meg A. Schaefer, Michael J. Naldrett, Sophie Alvarez, Nicholas T. Woods, Kyle J. Hewitt Jun 2022

Functional Requirements For A Samd14-Capping Protein Complex In Stress Erythropoiesis, Suhita Ray, Linda Chee, Yichao Zhou, Meg A. Schaefer, Michael J. Naldrett, Sophie Alvarez, Nicholas T. Woods, Kyle J. Hewitt

Nebraska Center for Biotechnology: Faculty and Staff Publications

Acute anemia induces rapid expansion of erythroid precursors and accelerated differentiation to replenish erythrocytes. Paracrine signals—involving cooperation between stem cell factor (SCF)/Kit signaling and other signaling inputs—are required for the increased erythroid precursor activity in anemia. Our prior work revealed that the sterile alpha motif (SAM) domain 14 (Samd14) gene increases the regenerative capacity of the erythroid system in a mouse genetic model and promotes stress-dependent Kit signaling. However, the mechanism underlying Samd14’s role in stress erythropoiesis is unknown. We identified a protein-protein interaction between Samd14 and the α- and β-heterodimers of the F-actin capping protein (CP) complex. Knockdown of …


Molecular-Level Control Over Ionic Conduction And Ionic Current Direction By Designing Macrocycle-Based Ionomers, Shyambo Chatterjee, Ehsan Zamani, Seefat Farzin, Iman Evazzade, Oghenetega Allen Obewhere, Tyler James Johnson, Vitaly Alexandrov, Shudipto Konika Dishari May 2022

Molecular-Level Control Over Ionic Conduction And Ionic Current Direction By Designing Macrocycle-Based Ionomers, Shyambo Chatterjee, Ehsan Zamani, Seefat Farzin, Iman Evazzade, Oghenetega Allen Obewhere, Tyler James Johnson, Vitaly Alexandrov, Shudipto Konika Dishari

Department of Chemical and Biomolecular Engineering: Faculty Publications

Poor ionic conductivity of the catalyst-binding, submicrometer- thick ionomer layers in energy conversion and storage devices is a huge challenge. However, ionomers are rarely designed keeping in mind the specific issues associated with nanoconfinement. Here, we designed nature-inspired ionomers (calix-2) having hollow, macrocyclic, calix[4]arene-based repeat units with precise, sub-nanometer diameter. In ≤100 nm-thick films, the in-plane proton conductivity of calix-2 was up to 8 times higher than the current benchmark ionomer Nafion at 85% relative humidity (RH), while it was 1−2 orders of magnitude higher than Nafion at 20−25% RH. Confocal laser scanning microscopy and other synthetic techniques allowed us …


Rheological Behavior Of Dspc-, Dbpc-, And Dppc-Oxygen Microbubbles And Their Effectiveness In Improving Survival In A Rat Model Of Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome, Riaz Ur Rehman Mohammed May 2022

Rheological Behavior Of Dspc-, Dbpc-, And Dppc-Oxygen Microbubbles And Their Effectiveness In Improving Survival In A Rat Model Of Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome, Riaz Ur Rehman Mohammed

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Acute respiratory distress syndrome (ARDS) causes 75,000 deaths in the U.S., annually. It is characterized by hypoxemia and damage to the lung alveoli. ARDS Management strategies involve extracorporeal membrane oxygenation (ECMO) and mechanical ventilation, but none of these methods improve the mortality rates. Oxygen microbubbles (OMBs) consist of a lipid shell with an oxygen core and have potential to augment oxygenation to manage ARDS. Previous studies demonstrated significant improvements in systemic oxygenation and mortality upon administering OMBs.

We replicated an ARDS rat model by intratracheal administration of lipopolysaccharide at a 24 mg/kg dose. After inducing the disease in rats, the …


Europium-Doped Cerium Oxide Nanoparticles For Microglial Aβ Clearance And Homeostasis, Jatin Machhi, Pravin Yeapuri, Milica Markovic, Milankumar Patel, Wenhui Yan, Yaman Lu, Jacob D. Cohen, Mahmudul Hasan, Mai Mohamed Abdelmoaty, You Zhou, Huangui Xiong, Xinglong Wang, R. Lee Mosley, Howard E. Gendelman, Bhavesh D. Kevadiya Apr 2022

Europium-Doped Cerium Oxide Nanoparticles For Microglial Aβ Clearance And Homeostasis, Jatin Machhi, Pravin Yeapuri, Milica Markovic, Milankumar Patel, Wenhui Yan, Yaman Lu, Jacob D. Cohen, Mahmudul Hasan, Mai Mohamed Abdelmoaty, You Zhou, Huangui Xiong, Xinglong Wang, R. Lee Mosley, Howard E. Gendelman, Bhavesh D. Kevadiya

Nebraska Center for Biotechnology: Faculty and Staff Publications

Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Pathologically, it is characterized by the deposition of amyloid beta (Aβ) plaques and presence of neurofibrillary tangles. These drive microglia neuroinflammation and consequent neurodegeneration. While the means to affect Aβ plaque accumulation was achieved how it affects disease outcomes remains uncertain. Cerium oxide (CeO2) reduces Aβ plaques, oxidative stress, inflammation, and Alzheimer’s disease (AD) signs and symptoms. Specifically, CeO2 nanoparticles (CeO2NPs) induces free radical scavenging and cell protective intracellular signaling. This can ameliorate the pathobiology of an AD-affected brain. In order to investigate, CeO2NPs …


Biomechanical Analysis Of Athletes Sprinting With Varying Degrees Of Resistance, Michaela Ott Apr 2022

Biomechanical Analysis Of Athletes Sprinting With Varying Degrees Of Resistance, Michaela Ott

Honors Theses

Utilizing resistance methods for sprinters is a common approach to their training. In this study, six athletes from the University of Nebraska-Lincoln Women’s Track and Field Team ran a series of sprints using a resistance machine to collect data regarding the change in power output, stride length, level of trunk tilt with respect to the ground, and acceleration throughout a distance of ten meters when different amounts of resistant forces were applied to the athlete. It was hypothesized that as resistance increased, power output would increase, stride length would decrease, the runners would become more horizontal resulting in a larger …


Protocol To Engineer Nanofilms Embedded Lipid Nanoparticles For Controlled And Targeted Drug Delivery (Nectar), Rashi Porwal, Stephen L. Hayward, Srivatsan Kidambi Mar 2022

Protocol To Engineer Nanofilms Embedded Lipid Nanoparticles For Controlled And Targeted Drug Delivery (Nectar), Rashi Porwal, Stephen L. Hayward, Srivatsan Kidambi

Department of Chemical and Biomolecular Engineering: Faculty Publications

We present a protocol to engineer a substrate-mediated delivery platform comprising hyaluronic acid-coated lipid nanoparticles (HALNPs) embedded into polyelectrolyte multilayer (PEM) films. This platform allows controlled spatiotemporal release of lipid nanoparticles (LNP) by embedding them within the polyelectrolyte multilayer films matrix. HALNP conjugate with antibodies also adds the ability for targeted delivery. The use of LNP enables this platform to encapsulate both hydrophobic and hydrophilic drugs. This platform can easily be reproduced and utilized for various biomedical drug delivery applications. For complete details on the use and execution of this protocol, please refer to Hayward et al. (2015, 2016a, 2016b), …