Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Engineering

Muscle Synergies Improve Estimation Of Knee Contact Forces During Walking, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd Dec 2015

Muscle Synergies Improve Estimation Of Knee Contact Forces During Walking, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd

Allison Kinney

This study investigates whether use of subject-specific muscle synergies can improve optimization predictions of muscle excitation patterns and knee contact forces during walking. Muscle synergies describe how a small number of neural commands generated by the nervous system can be linearly combined to produce the broad range of muscle electromyographic (EMG) signals measured experimentally. By quantifying the interdependence of individual EMG signals, muscle synergies provide dimensionality reduction for the neural control redundancy problem. Our hypothesis was that use of subjectspecific muscle synergies to limit muscle excitation patterns would improve prediction of muscle EMG patterns at the hip, knee, and ankle …


Muscle Synergy Constraints Improve Prediction Of Knee Contact Force During Gait, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd Dec 2015

Muscle Synergy Constraints Improve Prediction Of Knee Contact Force During Gait, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd

Allison Kinney

Knowledge of patient-specific muscle and joint contact forces during activities of daily living could improve the treatment of movement-related disorders (e.g., osteoarthritis, stroke, cerebral palsy, Parkinson’s disease). Unfortunately, it is currently impossible to measure these quantities directly under common clinical conditions, and calculation of these quantities using computer models is limited by the redundant nature of human neural control (i.e., more muscles than theoretically necessary to actuate the available degrees of freedom in the skeleton). Walking is a particularly important task to understand, since loss of mobility is associated with increased morbidity and decreased quality of life. Though numerous musculoskeletal …


Evaluation Of Different Optimal Control Problem Formulations For Solving The Muscle Redundancy Problem, Friedl De Groote, Allison Kinney, Anil Rao, Benjamin Fregly Dec 2015

Evaluation Of Different Optimal Control Problem Formulations For Solving The Muscle Redundancy Problem, Friedl De Groote, Allison Kinney, Anil Rao, Benjamin Fregly

Allison Kinney

This study evaluates several possible optimal control problem formulations for solving the muscle redundancy problem with the goal of identifying the most efficient and robust formulation. One novel formulation involves the introduction of additional controls that equal the time derivative of the states, resulting in very simple dynamic equations. The nonlinear equations describing muscle dynamics are then imposed as algebraic constraints in their implicit form, simplifying their evaluation. By comparing different problem formulations for computing muscle controls that can reproduce inverse dynamic joint torques during gait, we demonstrate the efficiency and robustness of the proposed novel formulation.


Material Properties And Microstructural Characterization Of Specimens, T.J. Silverman, Allison Kinney, B. South, W. Yong, J.H. Koo Dec 2015

Material Properties And Microstructural Characterization Of Specimens, T.J. Silverman, Allison Kinney, B. South, W. Yong, J.H. Koo

Allison Kinney

The HiQ upgrade to the 3D Systems Vanguard selective laser sintering (SLS) machine incorporates a revised thermal calibration system and new software. This paper quantifies differences in mechanical and morphological properties of specimens built first using a Vanguard HS (high-speed) system and again using the same system with the HiQ upgrade applied. Standard specimens are built from DuraForm PA material and tested for tensile modulus, tensile strength, elongation at break, flexural modulus and Izod impact strength. The design of the specimen battery, the conduction of the tests and the significance of the results are discussed. The upgrade is found to …


Synergies Controls Improve Prediction Of Knee Contact Forces And Muscle Excitations During Gait, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd Dec 2015

Synergies Controls Improve Prediction Of Knee Contact Forces And Muscle Excitations During Gait, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd

Allison Kinney

This study investigates whether use of muscle excitation controls constructed from subjectspecific muscle synergy information can improve optimization prediction of knee contact forces and muscle excitations during walking. Muscle synergies quantify how a large number of experimental muscle electromyographic (EMG) signals can be reconstructed by linearly mixing a much smaller number of neural commands generated by the nervous system. Our hypothesis was that controlling all muscle excitations with a small set of experimentally calculated neural commands would improve prediction of knee contact forces and leg muscle excitations compared to using independently controlled muscle excitations.


Comparison Of Material Properties And Microstructure Of Specimens Built Using The 3d Systems Vanguard Hs And Vanguard Hiq+Hs Sls Systems, T.J. Silverman, Allison Kinney, W. Yong, J.H. Koo Dec 2015

Comparison Of Material Properties And Microstructure Of Specimens Built Using The 3d Systems Vanguard Hs And Vanguard Hiq+Hs Sls Systems, T.J. Silverman, Allison Kinney, W. Yong, J.H. Koo

Allison Kinney

The HiQ upgrade to the 3D Systems Vanguard selective laser sintering (SLS) machine incorporates a revised thermal calibration system and new control software. The paper compares the tensile modulus, tensile strength, elongation at break, flexural modulus, Izod impact resistance and microstructure of two batteries of standard specimens built from recycled Duraform PA (Nylon 12). The first set is built on a Vanguard HS system and the second on the same system with the HiQ upgrade installed. The upgrade reduces user intervention, decreases total build time and improves surface finish. However, using the default processing parameters, tensile, flexure and impact properties …


Aeronautics Education, Research, And Industry Alliance (Aerial) Progress Report And Proposal, Brent D. Bowen Dec 2015

Aeronautics Education, Research, And Industry Alliance (Aerial) Progress Report And Proposal, Brent D. Bowen

Brent Bowen

UNOAI Report 04-2

The Aeronautics Education, Research, and Industry Alliance (AERIAL), which began as a comprehensive, mufti-faceted NASA EPSCoR 2000 initiative, has contributed substantially to the strategic research and technology priorities of NASA, while intensifying Nebraska's rapidly growing aeronautics research and development endeavors. AERIAL has enabled Nebraska researchers to: (a) continue strengthening their collaborative relationships with NASA Field Centers, Codes, and Enterprises; Co) increase the capacity of higher education throughout Nebraska to invigorate and expand aeronautics research; and (c) expedite the development of aeronautics-related research infrastructure and industry in the state. Nebraska has placed emphasis on successfully securing additional funds …


Aeronautics Education, Research, And Industry Alliance (Aerial) Progress Report And Proposal, Brent D. Bowen Dec 2015

Aeronautics Education, Research, And Industry Alliance (Aerial) Progress Report And Proposal, Brent D. Bowen

Brent Bowen

UNOAI Report 04-2 The Aeronautics Education, Research, and Industry Alliance (AERIAL), which began as a comprehensive, mufti-faceted NASA EPSCoR 2000 initiative, has contributed substantially to the strategic research and technology priorities of NASA, while intensifying Nebraska's rapidly growing aeronautics research and development endeavors. AERIAL has enabled Nebraska researchers to: (a) continue strengthening their collaborative relationships with NASA Field Centers, Codes, and Enterprises; Co) increase the capacity of higher education throughout Nebraska to invigorate and expand aeronautics research; and (c) expedite the development of aeronautics-related research infrastructure and industry in the state. Nebraska has placed emphasis on successfully securing additional funds …


Narrow-Linewidth Megahertz-Repetition-Rate Optical Parametric Oscillator For High-Speed Flow And Combustion Diagnostics, Naibo Jiang, Walter R. Lempert, Gary L. Switzer, Terrence R. Meyer, James R. Gord Nov 2015

Narrow-Linewidth Megahertz-Repetition-Rate Optical Parametric Oscillator For High-Speed Flow And Combustion Diagnostics, Naibo Jiang, Walter R. Lempert, Gary L. Switzer, Terrence R. Meyer, James R. Gord

Terrence R Meyer

We demonstrate the ability to generate ultra-high-frequency sequences of broadly wavelength-tunable, high-intensity laser pulses using a custom-built optical parametric oscillator pumped by the thirdharmonic output of a "burst-mode" Nd:YAG laser. Burst sequences consisting of 6-10 pulses separated in time by 6-10 Îs are obtained, with average total conversion efficiency from the 355 nm pump to the near-IR signal and idler wavelengths of 33%. Typical individual pulse output energy for the signal and idler beams is in the range of 4-6 mJ, limited by the available pump energy. Line narrowing is demonstrated by means of injection seeding the idler wave using …


Comparison Of Line-Peak And Line-Scanning Excitation In Two-Color Laser-Induced-Fluorescence Thermometry Of Oh, Stanislav Kostka, Sukesh Roy, Patrick J. Lakusta, Terrence R. Meyer, Michael W. Renfro, James R. Gord, Richard Branam Nov 2015

Comparison Of Line-Peak And Line-Scanning Excitation In Two-Color Laser-Induced-Fluorescence Thermometry Of Oh, Stanislav Kostka, Sukesh Roy, Patrick J. Lakusta, Terrence R. Meyer, Michael W. Renfro, James R. Gord, Richard Branam

Terrence R Meyer

Two-line laser-induced-fluorescence (LIF) thermometry is commonly employed to generate instantaneous planar maps of temperature in unsteady flames. The use of line scanning to extract the ratio of integrated intensities is less common because it precludes instantaneous measurements. Recent advances in the energy output of high-speed, ultraviolet, optical parameter oscillators have made possible the rapid scanning of molecular rovibrational transitions and, hence, the potential to extract information on gas-phase temperatures. In the current study, two-line OH LIF thermometry is performed in a wellcalibrated reacting flow for the purpose of comparing the relative accuracy of various line-pair selections from the literature and …


Mhz-Rate Nitric Oxide Planar Laser-Induced Fluorescence Imaging In A Mach 10 Hypersonic Wind Tunnel, Naibo Jiang, Matthew Webster, Walter R. Lempert, Joseph D. Miller, Terrence R. Meyer, Christopher B. Ivey, Paul M. Danehy Nov 2015

Mhz-Rate Nitric Oxide Planar Laser-Induced Fluorescence Imaging In A Mach 10 Hypersonic Wind Tunnel, Naibo Jiang, Matthew Webster, Walter R. Lempert, Joseph D. Miller, Terrence R. Meyer, Christopher B. Ivey, Paul M. Danehy

Terrence R Meyer

Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 timecorrelated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety …


Simultaneous High-Speed Measurement Of Temperature And Lifetime-Corrected Oh Laserinduced Fluorescence In Unsteady Flames, Terrence R. Meyer, Galen B. King, Matthew Glusenkamp, James R. Gord Nov 2015

Simultaneous High-Speed Measurement Of Temperature And Lifetime-Corrected Oh Laserinduced Fluorescence In Unsteady Flames, Terrence R. Meyer, Galen B. King, Matthew Glusenkamp, James R. Gord

Terrence R Meyer

A means of performing simultaneous, high-speed measurements of temperature and OH lifetime-corrected laser-induced fluorescence (LIF) for tracking unsteady flames has been developed and demonstrated. The system uses the frequency-doubled and frequency-tripled output beams of an 80 MHz mode-locked Ti:sapphire laser to achieve ultrashort laser pulses (order 2 ps) for Rayleigh-scattering thermometry at 460 nm and lifetime-corrected OH LIF at 306.5 nm, respectively. Simultaneous, high-speed measurements of temperature and OH number density enable studies of flame chemistry, heat release, and flame extinction in unsteady, strained flames where the local fluorescence-quenching environment is unknown.


Single-Shot Gas-Phase Thermometry Using Purerotational Hybrid Femtosecond/Picosecond Coherent Anti-Stokes Raman Scattering, Joseph D. Miller, Sukesh Roy, Mikhail N. Slipchenko, James R. Gord, Terrence R. Meyer Nov 2015

Single-Shot Gas-Phase Thermometry Using Purerotational Hybrid Femtosecond/Picosecond Coherent Anti-Stokes Raman Scattering, Joseph D. Miller, Sukesh Roy, Mikhail N. Slipchenko, James R. Gord, Terrence R. Meyer

Terrence R Meyer

High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate singleshot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps …


Lidar Observations Of Elevated Temperatures In Bright Chemiluminescent Meteor Trails During The 1998 Leonid Shower, Xinzhao Chu, Alan Z. Liu, George Papen, Chester S. Gardner Nov 2015

Lidar Observations Of Elevated Temperatures In Bright Chemiluminescent Meteor Trails During The 1998 Leonid Shower, Xinzhao Chu, Alan Z. Liu, George Papen, Chester S. Gardner

Alan Z Liu

Seven persistent trails associated with bright fireballs were probed with a steerable Na wind/temperature lidar at Starfire Optical Range, NM during the 17/18 Nov peak of the 1998 Leonid meteor shower. These chemiluminescence trails were especially rich in Na. The average Na abundance within the trails was 52% of the background Na layer abundance, which suggests that the corresponding masses of the meteors were from 1 g up to 1 kg. CCD images show that the chemiluminescent emissions (including Na and OH) are confined to the walls of a tube, which expands with time by molecular diffusion. Lidar profiles within …


Quantitative Time-Averaged Gas And Liquid Distributions Using X-Ray Fluorescence And Radiography In Atomizing Sprays, Christopher D. Radke, J. Patrick Mcmanamen, Alan L. Kastengren, Benjamin R. Halls, Terrence R. Meyer Nov 2015

Quantitative Time-Averaged Gas And Liquid Distributions Using X-Ray Fluorescence And Radiography In Atomizing Sprays, Christopher D. Radke, J. Patrick Mcmanamen, Alan L. Kastengren, Benjamin R. Halls, Terrence R. Meyer

Terrence R Meyer

A method for quantitative measurements of gas and liquid distributions is demonstrated using simultaneous x-ray fluorescence and radiography of both phases in an atomizing coaxial spray. Synchrotron radiation at 10.1 keV from the Advanced Photon Source at Argonne National Laboratory is used for x-ray fluorescence of argon gas and two tracer elements seeded into the liquid stream. Simultaneous time-resolved x-ray radiography combined with timeaveraged dual-tracer fluorescence measurements enabled corrections for reabsorption of x-ray fluorescence photons for accurate, line-of-sight averaged measurements of the distribution of the gas and liquid phases originating from the atomizing nozzle.


Implementing And Testing A Novel Chaotic Cryptosystem, Samuel Jackson, Scott Kerlin, Jeremy Straub Oct 2015

Implementing And Testing A Novel Chaotic Cryptosystem, Samuel Jackson, Scott Kerlin, Jeremy Straub

Jeremy Straub

Cryptography in the domain of small satellites is a relatively new area of research. Compared to typical desktop computers, small satellites have limited bandwidth, processing power, and battery power. Many of the current encryption schemes were developed for desktop computers and servers, and as such may be unsuitable for small satellites. In addition, most cryptographic research in the domain of small satellites focuses on hardware solutions, which can be problematic given the limited space requirements of small satellites.

This paper investigates potential software solutions that could be used to encrypt and decrypt data on small satellites and other devices with …


Unlocking The Mysteries Of Flight: From The Top Down, Juan Merkt Jul 2015

Unlocking The Mysteries Of Flight: From The Top Down, Juan Merkt

Juan R. Merkt

Traditionally, principles of flight are taught from the bottom-up. That is, we start by examining underlying causes (properties of air) and later move up to top consequences (aircraft performance). This traditional approach is analogous to that used by airplane designers and is most obvious in theory of flight textbooks for pilots. The problem with a bottom-up approach is that it introduces basic concepts as isolated “parts” without providing a “big picture” context. This can lead to poor understanding among student pilots. I suggest an opposite approach. Rather than starting with the underlying causes of flight, we can unravel basic principles …


Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann M. Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito Jun 2015

Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann M. Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito

Ole J Mengshoel

For unmanned aerial systems (UAS) to be successfully deployed and integrated within the national airspace, it is imperative that they possess the capability to effectively complete their missions without compromising the safety of other aircraft, as well as persons and property on the ground. This necessity creates a natural requirement for UAS that can respond to uncertain environmental conditions and emergent failures in real-time, with robustness and resilience close enough to those of manned systems. We introduce a system that meets this requirement with the design of a real-time onboard system health management (SHM) capability to continuously monitor sensors, software, …


Compact Kinetic Models For Typical And Alternative Aviation Turbine Fuels And Their Surrogates, Sang Hee Won, Jeffrey S. Santner, Francis M. Haas, Frederick L. Dryer, Stephen Dooley Apr 2015

Compact Kinetic Models For Typical And Alternative Aviation Turbine Fuels And Their Surrogates, Sang Hee Won, Jeffrey S. Santner, Francis M. Haas, Frederick L. Dryer, Stephen Dooley

Francis (Mac) Haas

Computational combustor design and analysis demands combustion kinetic models that are sufficiently compact in species number so that they can be used in multi-dimensional reacting computational fluid dynamics (CFD) simulations. These models ideally predict dynamic global combustion behaviors and emissions as faithfully as detailed kinetic models, but with significantly lower computational costs than even “reduced” models. Another aspect of computational engine analysis is the need to predict combustion and emissions behaviors resulting from variations in fuel composition, which is likely to increase as alternative fuels are used displace/replace conventional petro-derived aviation kerosenes. Accordingly, this work discusses a general methodology for …


Rate Coefficients For H+No2→Oh+No From High Pressure Flow Reactor Experiments, Francis M. Haas, Frederick L. Dryer Apr 2015

Rate Coefficients For H+No2→Oh+No From High Pressure Flow Reactor Experiments, Francis M. Haas, Frederick L. Dryer

Francis (Mac) Haas

Rate coefficients for the reaction H+NO2 → OH+NO (R1) were determined over the
nominal temperature and pressure ranges of 737-882 K and 10-20 atm, respectively, from spatially
resolved measurements in two different flow reactor facilities: one laminar and one turbulent. The
title reaction is important in a variety of situations including NO↔NO2 interconversion in the
power extraction stage of gas turbines, exhaust gas recirculation (EGR)-affected ignition in
reciprocating engines, and for H atom titration in elementary gas phase kinetics experiments. This
work determines absolute values of k1 with reference to the relatively well known rate coefficients
for H+O2+M → HO2+M …


Construction Of Naca 66-415 Nlf Composite Wing For Acoustic Turbulence Testing, Scott Sawyer, Sean Stewart Apr 2015

Construction Of Naca 66-415 Nlf Composite Wing For Acoustic Turbulence Testing, Scott Sawyer, Sean Stewart

Dr. Scott Sawyer

A design is developed for a Natural Laminar Flow (NLF) wing, to be used at California Polytechnic State University for acoustic turbulence testing. Composite materials are used to produce high-quality surface finishes necessary for laminar flow. A design for the test apparatus is presented and justified. A manufacturing procedure is proposed for the carbon fiber skin, using Vacuum Resin Infusion (VRI). This procedure is tested on a scaled part with satisfactory results; lessons learned are discovered and integrated into the final manufacturing process. The test section has been fit to the Cal Poly wind tunnel, but full implementation has not …


Optimum Grid By Direct Optimization Methods, Ajay Mahajan, Richard Hindman Apr 2015

Optimum Grid By Direct Optimization Methods, Ajay Mahajan, Richard Hindman

Dr. Ajay Mahajan

A solution-adaptive grid procedure based on optimization is developed and applied to the Linearized Viscous Burger's governing equation. The scheme redistributes the grid points as the solution adapts through each successive iteration step to minimize the truncation error terms in the modified equation and satisfy the governing equation. Fist order Roe scheme is used to discretize the governing equation. If the truncation error terms become negligible and the governing equation is satisfied by the scheme then the numerical solution approaches the exact solution.


Grid And Solution Adaptation Via Direct Optimization Methods, Ajay Mahajan Apr 2015

Grid And Solution Adaptation Via Direct Optimization Methods, Ajay Mahajan

Dr. Ajay Mahajan

At present all numerical schemes based on some form of differencing approach are plagued by some lack of accuracy when compared to the exact solution. This lack of accuracy can be attributed to the presence of truncation error in the numerical method. Traditionally the error can be reduced by increasing the number of mesh points in the discrete domain or by implementing a higher order numerical scheme. In recent times the approach has taken a more intelligent direction where adaptation or distribution of the mesh points is affected in such a way to reduce the error. However, grid adaptation with …


Review Of Seal Designs On The Apollo Spacecraft, Joshua Finkbeiner, Patrick Dunlap, Bruce Steinetz, Christopher Daniels Apr 2015

Review Of Seal Designs On The Apollo Spacecraft, Joshua Finkbeiner, Patrick Dunlap, Bruce Steinetz, Christopher Daniels

Dr. Christopher C Daniels

The Apollo spacecraft required a variety of seal designs to support human spaceflight to the moon and to return the crew safely to Earth. High-temperature seals were required for gaps in the thermal protection system to protect the underlying structures from the high heating environment of super orbital reentry. Reliable pressure seals were also required to prevent the loss of habitable atmosphere during missions to the moon...


That Used To Be Us: Through The Eyes Of The Aviation Industry, Kelly A. Whealan-George Jan 2015

That Used To Be Us: Through The Eyes Of The Aviation Industry, Kelly A. Whealan-George

Kelly Whealan George

The U.S. economic success was rooted in an industrial policy which had five pillars of a prosperity formula that served as a catalyst for development and growth: 1) public/private cooperation on education, 2) immigration policy, 3) infrastructure, 4) risk/capital management, and 5) government-funded scientific research. In this paper, the development and growth of the aviation industry is viewed in the framework of such a prosperity formula in order to face the four areas that the entire economy will need to face in the current market in order to be competitive in the global market in the 21st century. Since the …