Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

A Physical Model For The Kink Effect In Inalas/Ingaas Hemt’S, Mark Somerville, Alexander Ernst, Jesus Del Alamo Jul 2012

A Physical Model For The Kink Effect In Inalas/Ingaas Hemt’S, Mark Somerville, Alexander Ernst, Jesus Del Alamo

Mark Somerville

We present a new model for the the kink effect in InAlAs/InGaAs HEMTs. The model suggests that the kink is due to a threshold voltage shift which arises from a hole pile-up in the extrinsic source and an ensuing charging ofthe surface and/or the buffer-substrate interface. The model captures many of the observed behaviors of the kink, including the kink's dependence on bias, time, temperature, illumination, and device structure. Using the model, we have developed a simple equivalent circuit, which reproduced well the kink's dc characteristics, its time evolution in the nanosecond range, and its dependence on illumination.


Degradation Uniformity Of Rf-Power Gaas Phemts Under Electrical Stress, Anita Villanueva, Jesus Del Alamo, Takayuki Hisaka, Kazuo Hayashi, Mark Somerville Jul 2012

Degradation Uniformity Of Rf-Power Gaas Phemts Under Electrical Stress, Anita Villanueva, Jesus Del Alamo, Takayuki Hisaka, Kazuo Hayashi, Mark Somerville

Mark Somerville

We have studied the electrical degradation of RF-power PHEMTs by means of in situ 2-D light-emission measurements. Electroluminescence originates in the recombination of holes that have been generated by impact ionization. The local light intensity, thus, maps the electric-field distribution at the drain side of the device. This allows us to probe the uniformity of electrical degradation due to electric-field-driven mechanisms. We find that electrical degradation proceeds in a highly nonuniform manner across the width of the device. In an initial phase, degradation takes place preferentially toward the center of the gate finger. In advanced stages of degradation, the edges …


Determining Dominant Breakdown Mechanisms In Inp Hemts, Mark Somerville, Chris Putnam, Jesus Del Alamo Jul 2012

Determining Dominant Breakdown Mechanisms In Inp Hemts, Mark Somerville, Chris Putnam, Jesus Del Alamo

Mark Somerville

We present a new technique for determining the dominant breakdown mechanism in InAlAs-InGaAs high-electron mobility transistors. By exploiting both the temperature dependence and the bias dependence of different physical mechanisms, we are able to discriminate impact ionization gate current from tunneling and thermionic field emission gate current in these devices. Our results suggest that the doping level of the supply layers plays a key role in determining the relative importance of these two effects.


Film Thickness Constraints For Manufacturable Strained Silicon Cmos, J. Fiorenza, G. Braithwaite, C. Leitz, M. Currie, J. Yap, F. Singaporewala, V. Yang, T. Langdo, J. Carlin, Mark Somerville, A. Lochtefeld, H. Badawi, M. Bulsara Jul 2012

Film Thickness Constraints For Manufacturable Strained Silicon Cmos, J. Fiorenza, G. Braithwaite, C. Leitz, M. Currie, J. Yap, F. Singaporewala, V. Yang, T. Langdo, J. Carlin, Mark Somerville, A. Lochtefeld, H. Badawi, M. Bulsara

Mark Somerville

This paper studies the effect of the strained silicon thickness on the characteristics of strained silicon MOSFETs on SiGe virtual substrates. NMOSFETs were fabricated on strained silicon substrates with various strained silicon thicknesses, both above and below the strained silicon critical thickness. The low field electron mobility and subthreshold characteristics of the devices were measured. Low field electron mobility is increased by about 1.8 times on all wafers and is not significantly degraded on any of the samples, even for a strained silicon thickness far greater than the critical thickness. From the subthreshold characteristics, however, it is shown that the …


Physical Mechanisms Limiting The Manufacturing Uniformity Of Millimeter-Wave Power Inp Hemt's, Sergei Krupenin, Roxann Blanchard, Mark Somerville, Jesus Del Alamo, K. Duh, Pane Chao Jul 2012

Physical Mechanisms Limiting The Manufacturing Uniformity Of Millimeter-Wave Power Inp Hemt's, Sergei Krupenin, Roxann Blanchard, Mark Somerville, Jesus Del Alamo, K. Duh, Pane Chao

Mark Somerville

We have developed a methodology to diagnose the physical mechanisms limiting the manufacturing uniformity of millimeter-wave power InAlAs/InGaAs HEMT's on InP. A statistical analysis was carried out on dc figures of merit obtained from a large number of actual devices on an experimental wafer. Correlation studies and principal component analysis of the results indicated that variations in Si delta-doping concentration introduced during molecular-beam epitaxy accounted for more than half of the manufacturing variance. Variations in the gate-source distance that is determined by the electron-beam alignment in the gate formation process were found to be the second leading source of manufacturing …


Strained Si On Insulator Technology: From Materials To Devices, T. Langdo, M. Currie, Z.-Y. Cheng, J. Fiorenza, M. Erdtmann, G. Braithwaite, C. Leitz, C. Vineis, J. Carlin, A. Lochtefeld, M. Bulsara, Isaac Lauer, Dimitri Antoniadis, Mark Somerville Jul 2012

Strained Si On Insulator Technology: From Materials To Devices, T. Langdo, M. Currie, Z.-Y. Cheng, J. Fiorenza, M. Erdtmann, G. Braithwaite, C. Leitz, C. Vineis, J. Carlin, A. Lochtefeld, M. Bulsara, Isaac Lauer, Dimitri Antoniadis, Mark Somerville

Mark Somerville

SiGe-free strained Si on insulator (SSOI) is a new material system that combines the carrier transport advantages of strained Si with the reduced capacitance and improved scalability of thin film silicon on insulator (SOI). We demonstrate fabrication of 20% Ge equivalent strain level SSOI substrates with Si thicknesses of 100 and 400 Å by hydrogen-induced layer transfer of strained Si layers from high quality graded SiGe virtual substrates. The substrate properties are excellent: wafer scale strained Si film thickness uniformities are better than 8%, strained Si surface roughnesses are better than 0.5 nm RMS, and robust tensile strain levels are …


Fully Depleted N-Mosfets On Supercritical Thickness Strained Soi, Isaac Lauer, T. Langdo, Z.-Y. Cheng, J. Fiorenza, G. Braithwaite, M. Currie, C. Leitz, A. Lochtefeld, H. Badawi, M. Bulsara, Mark Somerville, Dimitri Antoniadis Jul 2012

Fully Depleted N-Mosfets On Supercritical Thickness Strained Soi, Isaac Lauer, T. Langdo, Z.-Y. Cheng, J. Fiorenza, G. Braithwaite, M. Currie, C. Leitz, A. Lochtefeld, H. Badawi, M. Bulsara, Mark Somerville, Dimitri Antoniadis

Mark Somerville

Strained silicon-on-insulator (SSOI) is a new material system that combines the carrier transport advantages of strained Si with the reduced parasitic capacitance and improved MOSFET scalability of thin-film SOI. We demonstrate fabrication of highly uniform SiGe-free SSOI wafers with 20% Ge equivalent strain and report fully depleted n-MOSFET results. We show that enhanced mobility is maintained in strained Si films transferred directly to SiO2 from relaxed Si0.8Ge0.2 virtual substrates, even after a generous MOSFET fabrication thermal budget. Further, we find the usable strained-Si thickness of SSOI significantly exceeds the critical thickness of strained Si/SiGe without deleterious leakage current effects typically …


The Search For Design In Electrical Engineering Education, David Kerns, Sherra Kerns, Mark Somerville, Gill Pratt, Jill Crisman Jul 2012

The Search For Design In Electrical Engineering Education, David Kerns, Sherra Kerns, Mark Somerville, Gill Pratt, Jill Crisman

Mark Somerville

The importance of "design" in engineering education is well established and a cornerstone of most new engineering curricula as well as accreditation criteria Electrical and computer engineering (ECE) programs view many elements of design in ways similar to other engineering disciplines. However, in some respects other disciplines within engineering, such as Mechanical Engineering (ME), view design in broader terms, and perhaps gain value that electrical and computer engineering educators may miss. This paper describes how design is typically viewed in ECE programs, bow it's viewed in other engineering areas, particularly ME, and suggests some new possibilities for enhancing design education …