Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Physics

Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 430

Full-Text Articles in Engineering

Competing Magnetic Phases And Itinerant Magnetic Frustration In Srco2 As2, Bing Li, Benjamin G. Ueland, W. T. Jayasekara, D. L. Abernathy, N. S. Sangeetha, David C. Johnston, Qing-Ping Ding, Yuji Furukawa, Peter P. Orth, Andreas Kreyssig, Alan I. Goldman, Robert J. Mcqueeney Oct 2019

Competing Magnetic Phases And Itinerant Magnetic Frustration In Srco2 As2, Bing Li, Benjamin G. Ueland, W. T. Jayasekara, D. L. Abernathy, N. S. Sangeetha, David C. Johnston, Qing-Ping Ding, Yuji Furukawa, Peter P. Orth, Andreas Kreyssig, Alan I. Goldman, Robert J. Mcqueeney

A. I. Goldman

Whereas magnetic frustration is typically associated with local-moment magnets in special geometric arrangements, here we show that SrCo2As2 is a candidate for frustrated itinerant magnetism. Using inelastic neutron scattering (INS), we find that antiferromagnetic (AF) spin fluctuations develop in the square Co layers of SrCo2As2 below T approximate to 100 K centered at the stripe-type AF propagation vector of (1/2, 1/2), and that their development is concomitant with a suppression of the uniform magnetic susceptibility determined via magnetization measurements. We interpret this switch in spectral weight as signaling a temperature-induced crossover from an instability toward ferromagnetism ordering to an instability …


Suppression Of Antiferromagnetic Spin Fluctuations In Superconducting Cr0.8 Ru0.2, M. Ramazanoglu, Benjamin G. Ueland, D. K. Pratt, L. W. Harringer, J. W. Lynn, G. Ehlers, G. E. Granroth, Sergey L. Bud’Ko, Paul C. Canfield, Deborah L. Schlagel, Alan I. Goldman, Thomas A. Lograsso, Robert J. Mcqueeney Jul 2019

Suppression Of Antiferromagnetic Spin Fluctuations In Superconducting Cr0.8 Ru0.2, M. Ramazanoglu, Benjamin G. Ueland, D. K. Pratt, L. W. Harringer, J. W. Lynn, G. Ehlers, G. E. Granroth, Sergey L. Bud’Ko, Paul C. Canfield, Deborah L. Schlagel, Alan I. Goldman, Thomas A. Lograsso, Robert J. Mcqueeney

A. I. Goldman

Unconventional superconductivity (SC) often develops in magnetic metals on the cusp of static antiferromagnetic (AFM) order where spin fluctuations are strong. This association is so compelling that many SC materials are labeled as unconventional by proximity to an ordered AFM state. The Cr-Ru alloy system possesses such a phase diagram [see Fig. 1(a)]. Here we use inelastic neutron scattering to show that spin fluctuations are present in a SC Cr0.8Ru0.2 alloy (Tc=1.35 K). However, the neutron spin resonance, a possible signature of unconventional SC, is not observed. Instead, data indicate a spin gap of order 2Δ (the superconducting gap) and …


Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski Dec 2018

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Tailoring The Asymmetric Magnetoimpedance Response In Exchange-Biased Ni - Fe Multilayers, Ufuk Kilic, Carolina Ross, Carlos Garcia Sep 2018

Tailoring The Asymmetric Magnetoimpedance Response In Exchange-Biased Ni - Fe Multilayers, Ufuk Kilic, Carolina Ross, Carlos Garcia

Ufuk Kilic

The dependence of the asymmetric magnetoimpedance (MI) response on the directions of both the magnetic field and the exchange bias is studied for an [NiFe(60nm)/IrMn(35nm)]×5 multilayer system. The antiferromagnetic (AFM) layers create an exchange bias that shifts both the hysteresis loop and the MI response of NiFe; the strength of this coupling depends on the thicknesses of both the ferromagnetic layer and the AFM layer. Tuning the exchange-bias angle and the applied-magnetic-field direction provides a practical method to control the symmetry and the magnitude of the MI response. The observed asymmetric response can …


High Consequence Scenarios For North Korean Atmospheric Nuclear Tests With Policy Recommendations For The U.S. Government, Thomas S. Popik, Jordan T. Kearns, George H. Baker Iii, Henry F. Cooper, William R. Harris May 2018

High Consequence Scenarios For North Korean Atmospheric Nuclear Tests With Policy Recommendations For The U.S. Government, Thomas S. Popik, Jordan T. Kearns, George H. Baker Iii, Henry F. Cooper, William R. Harris

George H Baker

The government of North Korea has declared high-altitude EMP-capability to be a “strategic goal” and has also threatened an atmospheric test of a hydrogen bomb. Atmospheric nuclear tests have the potential to cripple satellites and the undersea cable networks critical to communication, and navigation necessary for trans-Pacific trade among the U.S., China, and other nations. When a nuclear warhead is detonated at high altitude, a series of electromagnetic pulses radiate downward within the line of sight of the blast. These pulses can disable equipment with miniature electronics and long conductors. Electric grid controls and transmission systems are especially vulnerable. Intense …


Extracting Vibration Characteristics Of A Guitar Using Finite Element, Modal Analysis, And Digital Image Correlation Techniques, Kiran Patil, Javad Baqersad, Daniel Ludwigsen, Yaomin Dong Apr 2018

Extracting Vibration Characteristics Of A Guitar Using Finite Element, Modal Analysis, And Digital Image Correlation Techniques, Kiran Patil, Javad Baqersad, Daniel Ludwigsen, Yaomin Dong

Daniel Ludwigsen

The sound quality generated by the guitar depends on the vibration characteristics (i.e. natural frequencies and mode shapes) of this instrument. Thus, it is of particular interest to the guitar manufacturers to be able to obtain global information about the characteristics of the guitar. Traditional sensors can only measure at discrete locations. However, digital image correlation (DIC) can measure full-field data on the surface of the structure. In the current paper, a finite element (FE) model of a guitar with free boundary configurations was developed using quadratic solid elements. An eigensolution was performed on the FE model to determine its …


Damage Analysis Modified Trac Computer Program (Damtrac), George H. Baker Iii, Alan D. Mcnutt, G. Bradford Shea, David M. Rubenstein Feb 2018

Damage Analysis Modified Trac Computer Program (Damtrac), George H. Baker Iii, Alan D. Mcnutt, G. Bradford Shea, David M. Rubenstein

George H Baker

A computer program tailored for EMP damage analysis of solid-state circuitry has been developed by modifying the existing TRAC network analysis program. Modification of the TRAC diode and transistor models to include breakdown parameters and the addition of a semiconductor device parameter library have greatly simplified the analyst's task. An added feature is a subroutine that automatically calculates the amplitude and duration of transient power dissipated in electronic circuit components.


Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu Nov 2017

Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu

Jeffrey Hettinger

Carbide-derived Carbon (CDC) has been demonstrated to be an excellent electrode material for electrochemical devices including supercapacitors due to its chemical and electrochemical stability, large specific surface area and controllable pore size and morphology. Currently, CDC is prepared from metal carbides by chlorination in a chlorine gas atmosphere at temperatures of 350°C or higher. In this paper, conversion using electrochemical methods is reported, which can be achieved by oxidizing vanadium carbides (VC or V2C) in aqueous solutions at room temperature and a mild electrode potential to prepare CDC thin film as electrode materials for “on-chip” supercapacitiors. It was found that …


Behavior Of Na+-Polystyrene Sulfonate At The Interface With Single-Walled Carbon Nanotubes (Swnts) And Its Implication To Swnt Suspension Stability, Tabbetha A. Dobbins, Richard Chevious, Yuri Lvov Nov 2017

Behavior Of Na+-Polystyrene Sulfonate At The Interface With Single-Walled Carbon Nanotubes (Swnts) And Its Implication To Swnt Suspension Stability, Tabbetha A. Dobbins, Richard Chevious, Yuri Lvov

Tabbetha A. Dobbins

The assembly of sodium polystyrene sulfonate (Na+-PSS) at the surface of single-walled carbon nanotubes (SWNTs) in pH 3 aqueous solution is described. Rather than forming linear or sheet-like chain morphologies over SWNT surfaces, Na+-PSS adopts a spherically collapsed conformation believed to be the result of cation (either Na+ or H+) condensation onto the ionized polymer chain. It is well reported that cations (and also anions) adsorb preferentially onto single-walled and multi-walled carbon nanotube surfaces leading to an increased ion concentration in the near surface regions relative to the bulk solution. This work provides experimental evidence for preferentially absorbed cation condensation …


Study Of Morphological Changes In Mgh2 Destabilized Libh4 Systems Using Computed X-Ray Microtomography, Tabbetha A. Dobbins, Shathabish Narasegowda, Leslie G. Butler Nov 2017

Study Of Morphological Changes In Mgh2 Destabilized Libh4 Systems Using Computed X-Ray Microtomography, Tabbetha A. Dobbins, Shathabish Narasegowda, Leslie G. Butler

Tabbetha A. Dobbins

The objective of this study was to apply three-dimensional x-ray microtomographic imaging to understanding morphologies in the diphasic destabilized hydride system: MgH2 and LiBH4. Each of the single phase hydrides as well as two-phase mixtures at LiBH4:MgH2 ratios of 1:3, 1:1, and 2:1 were prepared by high energy ball milling for 5 minutes (with and without 4 mol % TiCl3 catalyst additions). Samples were imaged using computed microtomography in order to (i) establish measurement conditions leading to maximum absorption contrast between the two phases and (ii) determine interfacial volume. The optimal energy for measurement was determined to be 15 keV …


Evolution And Rationale For United States Department Of Defense Electromagnetic Pulse Protection Standard, George H. Baker Iii Nov 2017

Evolution And Rationale For United States Department Of Defense Electromagnetic Pulse Protection Standard, George H. Baker Iii

George H Baker

The United States (US) Department of Defense (DoD) Electromagnetic Pulse (EMP) protection standard offers a solid basis for protecting commercial communication, data, and control facilities. Because of the standard’s shielded barrier and test requirements, it is not surprising that there is a strong temptation within industry and government to dismiss the MIL-STD 188-125 approach in favor of less rigorous protection methods. It is important to understand that US DoD EMP protection standard for fixed facilities, MIL-STD-188-125, reflects an evolution by trial and error that spanned a period of decades beginning with the acquisition of the Minuteman Missile System in the …


Proposal For A Dod Combined Battlefield Electromagnetic Environmental Effects (E3) Initiative, George H. Baker Iii Nov 2017

Proposal For A Dod Combined Battlefield Electromagnetic Environmental Effects (E3) Initiative, George H. Baker Iii

George H Baker

The presentation emphasizes the growing importance of electromagnetic survivability and compatibility. Operation Desert Storm demonstrated the clear military advantage provided by sophisticated electronic weapon and communication systems. In addition, the offensive tactic of taking out the enemy's eyes and ears during the air war paid off, giving our military decisive air superiority. The lessons for the future are clear. High-tech electronics now so dominates the battlefield that the outcome of future conflicts could well be decided by electronics attrition rather than human casualties. Our Desert Storm experience thus accentuates the importance of guaranteeing that our electronic systems will not be …


Testimony Of Dr. George H. Baker, Senior Advisor To The Congressional Emp Commission, George H. Baker Iii Nov 2017

Testimony Of Dr. George H. Baker, Senior Advisor To The Congressional Emp Commission, George H. Baker Iii

George H Baker

This is the script of testimony before the Federal Energy Regulatory Commission. It offers a vision for a future in which our electric power systems will be able to operate through or quickly recover from catastrophic failure due to electromagnetic pulse (EMP), cyber, and physical attacks. The scope of the term ‘EMP’ used in this testimony includes both naturally occurring solar storms and the more energetic man-made EMP hazards. The vision has been discussed with members of the electric power industry, and prominent EMP/cyber/physical protection advocates who find it to be supportable and actionable. The nature of EMP, cyber, and …


Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore Jun 2017

Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore

Russell C. Hardie

In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a …


Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay Jun 2017

Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay

Russell C. Hardie

Lung cancer is the leading cause of cancer death in the United States. It usually exhibits its presence with the formation of pulmonary nodules. Nodules are round or oval-shaped growth present in the lung. Computed Tomography (CT) scans are used by radiologists to detect such nodules. Computer Aided Detection (CAD) of such nodules would aid in providing a second opinion to the radiologists and would be of valuable help in lung cancer screening. In this research, we study various feature selection methods for the CAD system framework proposed in FlyerScan. Algorithmic steps of FlyerScan include (i) local contrast enhancement (ii) …


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster Jun 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Russell C. Hardie

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an …


Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie Jun 2017

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie

Russell C. Hardie

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window. The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video …


Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore Jun 2017

Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore

Russell C. Hardie

We present a block-matching and Wiener filtering approach to atmospheric turbulence mitigation for long-range imaging of extended scenes. We evaluate the proposed method, along with some benchmark methods, using simulated and real-image sequences. The simulated data are generated with a simulation tool developed by one of the authors. These data provide objective truth and allow for quantitative error analysis. The proposed turbulence mitigation method takes a sequence of short-exposure frames of a static scene and outputs a single restored image. A block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames …


Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai Jun 2017

Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai

Russell C. Hardie

We present a numerical wave propagation method for simulating imaging of an extended scene under anisoplanatic conditions. While isoplanatic simulation is relatively common, few tools are specifically designed for simulating the imaging of extended scenes under anisoplanatic conditions. We provide a complete description of the proposed simulation tool, including the wave propagation method used. Our approach computes an array of point spread functions (PSFs) for a two-dimensional grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. The degradation …


Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch Jun 2017

Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch

Russell C. Hardie

Differential tilt variance is a useful metric for interpreting the distorting effects of turbulence in incoherent imaging systems. In this paper, we compare the theoretical model of differential tilt variance to simulations. Simulation is based on a Monte Carlo wave optics approach with split step propagation. Results show that the simulation closely matches theory. The results also show that care must be taken when selecting a method to estimate tilts.


Highly Directional Receiver And Source Antennas Using Photonic Band Gap Crystals, Rana Biswas, Gary L. Tuttle, Ekmel Ozbay, Burak Temelkuran, Mihail Sigalas, Kai-Ming Ho Jun 2017

Highly Directional Receiver And Source Antennas Using Photonic Band Gap Crystals, Rana Biswas, Gary L. Tuttle, Ekmel Ozbay, Burak Temelkuran, Mihail Sigalas, Kai-Ming Ho

Gary Tuttle

A directional antenna made with photonic band gap structures has been presented. The directional antenna is formed with two photonic band gap structures oriented back to back and separated from each other by a distance to form a resonant cavity between the photonic band gap structures. An antenna element is placed in the resonant cavity. The resonant frequency of the cavity is tuned by adjusting the distance between the photonic band gap structures. The resonant cavity can be asymmetrical or symmetrical.


Weak Anti-Localization And Quantum Oscillations Of Surface States In Topological Insulator Bi2se2te, Lihong Bao, Liang He, Nicholas R. Meyer, Xufeng Kou, Peng Zhang, Zhi-Gang Chen, Alexei V. Fedorov, Trevor M. Riedemann, Thomas A. Lograsso, Kang L. Wang, Gary Tuttle, Faxian Xiu Jun 2017

Weak Anti-Localization And Quantum Oscillations Of Surface States In Topological Insulator Bi2se2te, Lihong Bao, Liang He, Nicholas R. Meyer, Xufeng Kou, Peng Zhang, Zhi-Gang Chen, Alexei V. Fedorov, Trevor M. Riedemann, Thomas A. Lograsso, Kang L. Wang, Gary Tuttle, Faxian Xiu

Gary Tuttle

Topological insulators, a new quantum state of matter, create exciting opportunities for studying topological quantum physics and for exploring spintronic applications due to their gapless helical metallic surface states. Here, we report the observation of weak anti-localization and quantum oscillations originated from surface states in Bi2Se2Te crystals. Angle-resolved photoemission spectroscopy measurements on cleaved Bi2Se2Te crystals show a well-defined linear dispersion without intersection of the conduction band. The measured weak anti-localization effect agrees well with the Hikami-Larkin-Nagaoka model and the extracted phase coherent length shows a power-law dependence with temperature ( ∼T−0.44), indicating the presence of the surface states. …


Ferromagnetism Of Magnetically Doped Topological Insulators In Crxbi2− Xte3 Thin Films, Yan Ni, Z. Zhang, Ikenna C. Nlebedim, M. Ravi Hadimani, Gary L. Tuttle, David C. Jiles Jun 2017

Ferromagnetism Of Magnetically Doped Topological Insulators In Crxbi2− Xte3 Thin Films, Yan Ni, Z. Zhang, Ikenna C. Nlebedim, M. Ravi Hadimani, Gary L. Tuttle, David C. Jiles

Gary Tuttle

We investigated the effect of magnetic doping on magnetic and transport properties of Bi2Te3thin films. CrxBi2−xTe3 thin films with x = 0.03, 0.14, and 0.29 were grown epitaxially on mica substrate with low surface roughness (∼0.4 nm). It is found that Cr is an electron acceptor in Bi2Te3 and increases the magnetization of CrxBi2−xTe3. When x = 0.14 and 0.29,ferromagnetism appears in CrxBi2−xTe3 thin films, where anomalous Hall effect and weak localization of magnetoconductance were observed. The Curie temperature, coercivity, and remnant Hall resistance of thin films increase with increasing Cr concentration. The Arrott-Noakes plot demonstrates that the critical mechanism …


Vector Acoustic Intensity Around A Tuning Fork, Daniel A. Russell, Justin Junell, Daniel O. Ludwigsen May 2017

Vector Acoustic Intensity Around A Tuning Fork, Daniel A. Russell, Justin Junell, Daniel O. Ludwigsen

Daniel Ludwigsen

The acoustic intensity vector field around a tuning fork is investigated. Theory for a longitudinal quadrupole source predicts a well-defined transition between near-field and far-field, with significant circulation of sound energy in the near-field. Vector components of the time-averaged intensity were measured using a two-microphone intensity probe and found to agree well with predictions from theory. The vector intensity map is interpreted, and shown to provide useful information about the near-field of an acoustic source.


A Simple Electric Field Probe In A Gauss's Law Laboratory, Daniel O. Ludwigsen, Gregory N. Hassold May 2017

A Simple Electric Field Probe In A Gauss's Law Laboratory, Daniel O. Ludwigsen, Gregory N. Hassold

Daniel Ludwigsen

Early in our calculus-based introductory course, students are introduced to electric fields and sometimes struggle with the abstraction of a vector field. They have less familiarity with the phenomena associated with electric fields, and the connection between phenomena and mathematical formalism is weaker. Our very next topic is Gauss's law.


Better Understanding Of Resonance Through Modeling And Visualization, Daniel O. Ludwigsen, Cayla Jewett, Matthew Jusczcyk May 2017

Better Understanding Of Resonance Through Modeling And Visualization, Daniel O. Ludwigsen, Cayla Jewett, Matthew Jusczcyk

Daniel Ludwigsen

Students encounter cavity resonance and waveguide phenomena in acoustics courses and texts, where the study is usually limited to cases with simple geometries: parallelepipeds, cylinders, and spheres. Long-wavelength approximations help with situations of more complexity, as in the classic Helmholtz resonator. At Kettering University, we are beginning to employ finite element modeling in our acoustics classes to help undergraduates better understand the acoustic modes of actual structures. This approach to the time-independent wave equation (the Helmholtz equation) was first used in a research and measurements class to investigate two classic resonance problems. The first problem was a study of resonance …


Choose Wisely: Static Or Kinetic Friction—The Power Of Dimensionless Plots, Daniel O. Ludwigsen, Kathryn A. Svinarich May 2017

Choose Wisely: Static Or Kinetic Friction—The Power Of Dimensionless Plots, Daniel O. Ludwigsen, Kathryn A. Svinarich

Daniel Ludwigsen

Consider a problem of sliding blocks, one stacked atop the other, resting on a friction-less table. If the bottom block is pulled horizontally, nature makes a choice: if the applied force is small, static friction between the blocks accelerates the blocks together, but with a large force the blocks slide apart. In that case, kinetic friction still forces the upper block forward but with less acceleration than the lower block. The choice, then, lies in the relative terms—what is meant by small and large? After a confusing experience during a recent exam, we’ve found a demonstration and graphical presentation that …


Acoustic Testing And Modeling: An Advanced Undergraduate Laboratory, Daniel A. Russell, Daniel O. Ludwigsen May 2017

Acoustic Testing And Modeling: An Advanced Undergraduate Laboratory, Daniel A. Russell, Daniel O. Ludwigsen

Daniel Ludwigsen

This paper describes an advanced laboratory course in acoustics, specifically targeted for students with an interest in engineering applications at a school with a strongly integrated industrial co-op program. The laboratory course is developed around a three-pronged approach to problem solving that combines and integrates theoretical models, computational models, and experimental data. The course is structured around modules that begin with fundamental concepts and build laboratory skills and expand the knowledge base toward a final project. Students keep a detailed laboratory notebook, write research papers in teams, and must pass laboratory certification exams. This paper describes the course layout and …


Removal Of Chlorine From Chlorine-Nitrogen Mixture In A Film Of Liquid Water, Sarwan S. Sandhu Mar 2017

Removal Of Chlorine From Chlorine-Nitrogen Mixture In A Film Of Liquid Water, Sarwan S. Sandhu

Sarwan S. Sandhu

In industry there are many examples of absorption of a gas with or without chemical reaction in the liquid phase. In physical absorption, a particular gaseous component is removed from a gas mixture due to its larger solubility in the liquid phase solvent. The removal of butane and pentane from a refinery gas mixture by a heavy oil in the liquid phase is an example of physical absorption. In absorption with chemical reaction, the gaseous component to be removed transfers across the gas-liquid interface due to a difference in the bulk chemical potentials or concentrations in the two phases. The …


Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson Mar 2017

Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson

Thomas E. Wilson

Progress is described in experiments to generate coherent terahertz acoustic phonons in silicon doping superlattices by the resonant absorption of nanosecond-pulsed far-infrared laser radiation. Future experiments are proposed that would use the superlattice as a transducer in a terahertz cryogenic acoustic reflection microscope with sub-nanometer resolution.