Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Building A Biomechanical Model Of A Rat Forelimb, Joshua Nathaniel Eric Mak Sep 2021

Building A Biomechanical Model Of A Rat Forelimb, Joshua Nathaniel Eric Mak

Dissertations and Theses

This paper presents a biomechanical model of the rat forelimb to test theories of determining viscoelastic muscle parameters. Several biomechanical models of rat hindlimbs have been developed and have explored the effects of multi-muscle control during locomotion. The forelimb model uses two ball-and-socket joints to model clavicle and scapula movement. A third ball-and-socket joint is used at the shoulder and two hinge joints are used at the elbow and wrist. Scapula motion is further constrained by muscle and spring elements. Each forelimb has 11 degrees of freedom, and 23 Hill-type muscles. The model has been created in Animatlab, which includes …


Tracking Center Of Mass With Limited Inertial Measurement Units, Connor Nathaniel Morrow Sep 2019

Tracking Center Of Mass With Limited Inertial Measurement Units, Connor Nathaniel Morrow

Dissertations and Theses

Wearable motion tracking systems pose an opportunity to study and correct human balance and posture during movement. Currently, these observations are either being conducted in laboratories with the use of camera systems and markers placed on the body, or through the use of suits containing large numbers (15-20) of inertial measurement units. However, to aid with rehabilitation of individuals with impaired balance, there needs to be an option to collect these observations outside of clinics and without incurring much cost from the user. I have focused on three inertial measurement units, one placed on each shank and one placed on …


Analyzing Moment Arm Profiles In A Full-Muscle Rat Hindlimb Model, Fletcher Young, Christian Rode, Alexander Hunt, Roger Quinn Jan 2019

Analyzing Moment Arm Profiles In A Full-Muscle Rat Hindlimb Model, Fletcher Young, Christian Rode, Alexander Hunt, Roger Quinn

Mechanical and Materials Engineering Faculty Publications and Presentations

Understanding the kinematics of a hindlimb model is a fundamental aspect of modeling coordinated locomotion. This work describes the development process of a rat hindlimb model that contains a complete muscular system and incorporates physiological walking data to examine realistic muscle movements during a step cycle. Moment arm profiles for selected muscles are analyzed and presented as the first steps to calculating torque generation at hindlimb joints. A technique for calculating muscle moment arms from muscle attachment points in a three-dimensional (3D) space has been established. This model accounts for the configuration of adjacent joints, a critical aspect of biarticular …


Biomechanical Analysis Of Concealed Pack Load Influences On Terrorist Gait Signatures Derived From Gröbner Basis Theory, Sean S. Kohles, Anum Barki, Kimberly D. Kendricks, Ronald F. Tuttle Jan 2014

Biomechanical Analysis Of Concealed Pack Load Influences On Terrorist Gait Signatures Derived From Gröbner Basis Theory, Sean S. Kohles, Anum Barki, Kimberly D. Kendricks, Ronald F. Tuttle

Biology Faculty Publications and Presentations

This project examines kinematic gait parameters as forensic predictors of the influence associated with individuals carrying concealed weighted packs up to 20% of their body weight. An initial inverse dynamics approach combined with computational algebra provided lower limb joint angles during the stance phase of gait as measured from 12 human subjects during normal walking. The following paper describes the additional biomechanical analysis of the joint angle data to produce kinetic and kinematic parameters further characterizing human motion. Results include the rotational velocities and accelerations of the hip, knee, and ankle as well as inertial moments and kinetic energies produced …


Novel Computational Approaches Characterizing Knee Physiotherapy, Wangdo Kim, Antonio P. Veloso, Duarte Araújo, Sean S. Kohles Jan 2014

Novel Computational Approaches Characterizing Knee Physiotherapy, Wangdo Kim, Antonio P. Veloso, Duarte Araújo, Sean S. Kohles

Biology Faculty Publications and Presentations

A knee joint’s longevity depends on the proper integration of structural components in an axial alignment. If just one of the components is abnormally off-axis, the biomechanical system fails, resulting in arthritis. The complexity of various failures in the knee joint has led orthopedic surgeons to select total knee replacement as a primary treatment. In many cases, this means sacrificing much of an otherwise normal joint. Here, we review novel computational approaches to describe knee physiotherapy by introducing a new dimension of foot loading to the knee axis alignment producing an improved functional status of the patient. New physiotherapeutic applications …


Ultrasonic Wave Propagation Assessment Of Native Cartilage Explants And Hydrogel Scaffolds For Tissue Engineering, Sean S. Kohles, Shelley S. Mason, Anya P. Adams, Robert J. Berg, Jessica Blank, Fay Gibson, Johnathan Righetti, Lesha S. Washington, Asit K. Saha Jan 2012

Ultrasonic Wave Propagation Assessment Of Native Cartilage Explants And Hydrogel Scaffolds For Tissue Engineering, Sean S. Kohles, Shelley S. Mason, Anya P. Adams, Robert J. Berg, Jessica Blank, Fay Gibson, Johnathan Righetti, Lesha S. Washington, Asit K. Saha

Mechanical and Materials Engineering Faculty Publications and Presentations

Non-destructive techniques characterising the mechanical properties of cells, tissues, and biomaterials provide baseline metrics for tissue engineering design. Ultrasonic wave propagation and attenuation has previously demonstrated the dynamics of extracellular matrix synthesis in chondrocyte-seeded hydrogel constructs. In this paper, we describe an ultrasonic method to analyse two of the construct elements used to engineer articular cartilage in real-time, native cartilage explants and an agarose biomaterial. Results indicated a similarity in wave propagation velocity ranges for both longitudinal (1500-1745 m/s) and transverse (350-950 m/s) waveforms. Future work will apply an acoustoelastic analysis to distinguish between the fluid and solid properties including …


Manipulation Of Suspended Single Cells By Microfluidics And Optical Tweezers, Nathalie Neve De Mevergnies, Sean S. Kohles, Shelley R. Winn, Derek C. Tretheway Sep 2010

Manipulation Of Suspended Single Cells By Microfluidics And Optical Tweezers, Nathalie Neve De Mevergnies, Sean S. Kohles, Shelley R. Winn, Derek C. Tretheway

Mechanical and Materials Engineering Faculty Publications and Presentations

Chondrocytes and osteoblasts experience multiple stresses in vivo. The optimum mechanical conditions for cell health are not fully understood. This paper describes the optical and microfluidic mechanical manipulation of single suspended cells enabled by the μPIVOT, an integrated micron resolution particle image velocimeter (μPIV) and dual optical tweezers instrument (OT). In this study, we examine the viability and trap stiffness of cartilage cells, identify the maximum fluid-induced stresses possible in uniform and extensional flows, and compare the deformation characteristics of bone and muscle cells. These results indicate cell photodamage of chondrocytes is negligible for at least 20 min for laser …