Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Engineering

Pend Oreille River, Box Canyon Model: Model Scenario Simulations, Chris Berger, Robert Leslie Annear, Scott A. Wells Jul 2007

Pend Oreille River, Box Canyon Model: Model Scenario Simulations, Chris Berger, Robert Leslie Annear, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The Washington Department of Ecology is interested in developing a temperature Total Maximum Daily Load (TMDL) allocation for the Pend Oreille River between the Albeni Falls Dam (U.S. Army Corps of Engineer’s reservoir) and Box Canyon Dam as shown in Figure 1. The Pend Oreille drainage basin is shown in Figure 2. An existing model of the Box Canyon reach was updated from CE-QUALW2 Version 3.0 to Version 3.5. This current research involves improving the calibration of the original model (1997 and 1998) and expanding the model using 2004 as an additional data set for calibration.

The use of field …


Lake Whatcom Model Calibration With Variable Stoichiometry In Sediments - Revised, Chris Berger, Scott A. Wells Feb 2007

Lake Whatcom Model Calibration With Variable Stoichiometry In Sediments - Revised, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

This memorandum discusses model calibration and enhancements made to the Lake Whatcom water quality model. Model development and initial calibration were documented in the report “Lake Whatcom Water Quality Model” (Berger and Wells, 2005). The Lake Whatcom water quality model has been converted from CE-QUAL-W2 version 3.2 to version 3.5 (Cole and Wells, 2006).


Idaho Pend Oreille River Model: Model Development And Calibration, Robert Leslie Annear, Chris Berger, Scott A. Wells Nov 2006

Idaho Pend Oreille River Model: Model Development And Calibration, Robert Leslie Annear, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The objectives of this project were to:

• Develop a hydrodynamic and temperature model of Pend Oreille River using CE-QUAL-W2 Version 3.2

• Calibrate the CE-QUAL-W2 model to field data collected during 2004 and 2005 using the following water quality variables:

  • flow, water surface elevation, and velocity
  • temperature o dissolved oxygen
  • nutrients (NO3-N+NO2-N, NH4-N, PO4-P)
  • algae – chlorophyll a
  • BOD5 and dissolved organic matter and particulate organic matter compartments (both labile and refractory) for the organic matter cycling with algae
  • periphyton

The model chosen for development was CE-QUAL-W2 Version 3.2 (Cole and Wells, 2004). This is a two-dimensional unsteady hydrodynamic …


Pend Oreille River, Box Canyon Model: Model Development And Calibration, Robert Leslie Annear, Chris Berger, Scott A. Wells Nov 2006

Pend Oreille River, Box Canyon Model: Model Development And Calibration, Robert Leslie Annear, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The purpose of this study was to improve the existing Version 3.0 application of CE-QUAL-W2 of the Pend Oreille River between Box Canyon Dam and Albeni Falls Dam by performing the tasks outlined above. In addition, the use of field data from 2004 as an additional calibration year would improve the confidence in the model’s predictive ability for temperature. The model simulations were run from January 1st to December 31st in each of the 3 years of model simulation: 1997, 1998 and 2004.

The model chosen for development is CE-QUAL-W2 Version 3.5 (Cole and Wells, 2006). This is a twodimensional …


Lake Whatcom Water Quality Model, Chris Berger Jul 2005

Lake Whatcom Water Quality Model, Chris Berger

Civil and Environmental Engineering Faculty Publications and Presentations

A water quality model of Lake Whatcom, Washington was developed as part of a Total Maximum Daily Load Study for the Washington Department of Ecology. Lake Whatcom is a large natural lake which is listed on the 1998 Washington State 303(d) list of waterbodies which do not meet the criterion for dissolved oxygen. Located next to the city of Bellingham, it is approximately 10 miles long and has a surface area of approximately 5000 acres and a maximum depth of over 100 meters. Eutrophication processes in the lake have been accelerated in recent years perhaps by the availability of nutrients …


Upper Spokane River Model In Idaho: Boundary Conditions And Model Setup And Calibration For 2001 And 2004, Robert Leslie Annear, Scott A. Wells, Chris Berger Jul 2005

Upper Spokane River Model In Idaho: Boundary Conditions And Model Setup And Calibration For 2001 And 2004, Robert Leslie Annear, Scott A. Wells, Chris Berger

Civil and Environmental Engineering Faculty Publications and Presentations

As a result of a Total Maximum Daily Load (TMDL) study of the Spokane River in Washington, a hydrodynamic and water quality model for the Spokane River was developed by Portland State University (PSU) for the Corps of Engineers and the Washington Department of Ecology from the Washington-Idaho state line to the outlet of Long Lake.

An earlier study of the Spokane River was undertaken by Limno-Tech (2001a, 2001b) for the domain shown in Figure 3. Limno-Tech used an earlier version of CE-QUAL-W2, Version 2, for the Reservoir portion of the Spokane River from Post Falls Dam to Coeur d’Alene …


Waldo Lake Research In 2004, Mark D. Sytsma, John Rueter, Richard Petersen, Roy Koch, Scott A. Wells, Michelle Wood, Yangdong Pan, Robert Leslie Annear, Aaron Hook, Laura Johnson, Rich Miller, Amanda Murphy, Terry Stoltz Jun 2005

Waldo Lake Research In 2004, Mark D. Sytsma, John Rueter, Richard Petersen, Roy Koch, Scott A. Wells, Michelle Wood, Yangdong Pan, Robert Leslie Annear, Aaron Hook, Laura Johnson, Rich Miller, Amanda Murphy, Terry Stoltz

Center for Lakes and Reservoirs Publications and Presentations

The Willamette National Forest has worked with Portland State University, Center for Lakes and Reservoirs (PSU) and the University of Oregon (UO) to investigate ecosystem changes, provide guidance on long-term monitoring methods, assess monitoring data, develop predictive water quality models, and conduct research that will lead to better protection and understanding of the Waldo Lake ecosystem. This report summarizes the second year of collaborative PSU-UO research at Waldo Lake. Research has focused on understanding physical, chemical and biological characteristics of Waldo Lake across a range of spatial and temporal scales. Research tasks that continued from 2003 into 2004 included temperature …


Laurance Lake Temperature Model, Chris Berger, Scott A. Wells, Robert Leslie Annear Jun 2005

Laurance Lake Temperature Model, Chris Berger, Scott A. Wells, Robert Leslie Annear

Civil and Environmental Engineering Faculty Publications and Presentations

Laurance Lake is a reservoir located in Hood River County, Oregon (Figure 1). It is located at the base on Mt. Hood in Oregon (see Figure 2 and Figure 3), discharges into the Middle Fork of the Hood River. The reservoir was constructed in 1968 for irrigation storage and has a capacity 3564 acre- feet at full pool. Since the river vio lates temperature standards, this study has been designed to construct a hydrodynamic and temperature model of Laurance reservoir in order to assess strategies for improving temperatures in the Middle Fork River.

The objectives of the study are then …


Willamette River Basin Temperature Tmdl Model: Model Calibration, Chris Berger, Michael Lee Mckillip, Robert Leslie Annear, Sher Jamal Khan, Scott A. Wells Aug 2004

Willamette River Basin Temperature Tmdl Model: Model Calibration, Chris Berger, Michael Lee Mckillip, Robert Leslie Annear, Sher Jamal Khan, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The State of Oregon Department of Environmental Quality (DEQ) is developing a TMDL for temperature in the Willamette River basin shown in Figure 1. The study area included the Willamette River and all major tributaries (except the Tualatin River where a TMDL process was already concluded). A large section of the Columbia River was also modeled to provide adequate boundary representation of tidal flows in the lower Willamette River. The Willamette River below the Oregon City Falls in the Portland metropolitan area has a typical diurnal tidal range of 1 m. The development of a dynamic model of temperature and …


Green River Ce-Qual-W2 Project: A Hydrodynamic And Water Quality Study Of The Green River King County, Washington, Tim Kraft, Robert Leslie Annear, Chris Berger, Scott A. Wells Jul 2004

Green River Ce-Qual-W2 Project: A Hydrodynamic And Water Quality Study Of The Green River King County, Washington, Tim Kraft, Robert Leslie Annear, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

This report describes the data processing and model calibration performed for a hydrodynamic and water quality model of the Green River, located in King County, Washington. Figure 1 shows the location of the river, and the limits of the section of river that was modeled.

The Green River flows from its headwaters in the Cascade Mountain foothills through the King County, Washington communities of Auburn, Kent, and Tukwila before discharging into the Duwamish River. Two sections of the river were modeled in this project. The Middle Green River begins in the Cascade Mountain foothills east of Tacoma, and continues downstream …


Willamette River Basin Temperature Tmdl Model: Model Scenarios, Robert Leslie Annear, Michael Lee Mckillip, Sher Jamal Khan, Chris Berger, Scott A. Wells Apr 2004

Willamette River Basin Temperature Tmdl Model: Model Scenarios, Robert Leslie Annear, Michael Lee Mckillip, Sher Jamal Khan, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The State of Oregon Department of Environmental Quality (DEQ) is developing a TMDL for temperature in the Willamette River basin shown in Figure 1. The study area included the Willamette River and all major tributaries (except the Tualatin River where a TMDL process was already concluded). A large section of the Columbia River was also modeled to provide adequate boundary representation of tidal flows in the lower Willamette River. The Willamette River below the Oregon City Falls in the Portland metropolitan area has a typical diurnal tidal range of 1 m. The development of a dynamic model of temperature and …


Willamette River Basin Temperature Tmdl Model: Boundary Conditions And Model Setup, Robert Leslie Annear, Michael Lee Mckillip, Sher Jamal Khan, Chris Berger, Scott A. Wells Jan 2004

Willamette River Basin Temperature Tmdl Model: Boundary Conditions And Model Setup, Robert Leslie Annear, Michael Lee Mckillip, Sher Jamal Khan, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The State of Oregon Department of Environmental Quality (DEQ) is developing a TMDL for temperature in the Willamette River basin shown in Figure 1. The study area included the Willamette River and all major tributaries (except the Tualatin River where a TMDL process was already concluded). A large section of the Columbia River was also modeled to provide adequate boundary representation of tidal flows in the lower Willamette River. The Willamette River below the Oregon City Falls in the Portland metropolitan area has a typical diurnal tidal range of 1 m. The development of a dynamic model of temperature and …


Review Of Spokane River Model For Washington Department Of Ecology, Chris Berger, Robert Leslie Annear, Scott A. Wells Jan 2004

Review Of Spokane River Model For Washington Department Of Ecology, Chris Berger, Robert Leslie Annear, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

This memorandum discusses changes made to the Spokane River model calibration since the original calibration of the model discussed in the following reports: Annear et al. (2001), Berger at al. (2002), Slominski et al. (2002), and Berger et al. (2003). The first group of refinements was made by the Washington Department of Ecology. Additional changes were made by Portland State University (PSU) and were discussed in this report along with the results of two alternative calibrations. The last section displays the original calibration results from Berger et al. (2003) as a basis for comparison to the changes made by Ecology …


Upper Spokane River Model In Idaho: Boundary Conditions And Model Setup For 2001, Scott A. Wells, Robert Leslie Annear, Chris Berger Apr 2003

Upper Spokane River Model In Idaho: Boundary Conditions And Model Setup For 2001, Scott A. Wells, Robert Leslie Annear, Chris Berger

Civil and Environmental Engineering Faculty Publications and Presentations

The Spokane River in Idaho originates in Coeur d’Alene Lake (Figure 1 and Figure 2). The section of the Spokane River from Coeur d’Alene Lake to the Washington state line is the subject of a water quality study for the US Environmental Protection Agency. The objective of this study is to create a water quality and hydrodynamic model of the Spokane River in Idaho using CE-QUAL-W2 Version 3.1 (Cole and Wells, 2002).

Since the Spokane River is water quality limited, a hydrodynamic and water quality model for the Spokane River in Washington was developed by Portland State University for the …


Upper Spokane River Model: Model Calibration, 2001, Chris Berger, Robert Leslie Annear, Benjamin Welle Jan 2003

Upper Spokane River Model: Model Calibration, 2001, Chris Berger, Robert Leslie Annear, Benjamin Welle

Civil and Environmental Engineering Faculty Publications and Presentations

The Upper Spokane River system under consideration is located in the Northeastern part of Washington State and runs from the Stateline with Idaho, River mile (RM) 96.0, downstream to Long Lake dam at RM 32.5. Figure 1 shows the river system and an outline the boundaries of the City of Spokane.

The Washington Department of Ecology (Ecology) is interested in a water quality model for the Upper Spokane River system for use in developing Total Maximum Daily Loads (TMDLs). As a result, Ecology and the Corps of Engineers funded a study to develop a water quality and hydrodynamic model of …


Upper Spokane River Model: Boundary Conditions And Model Setup, 2001, Spencer Slominski, Robert Leslie Annear, Chris Berger, Scott A. Wells Dec 2002

Upper Spokane River Model: Boundary Conditions And Model Setup, 2001, Spencer Slominski, Robert Leslie Annear, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The Washington Department of Ecology is interested in a water quality model for the Upper Spokane River system for use in developing Total Maximum Daily Loads (TMDLs). The goals of this modeling effort are to:

• Gather data to construct a computer simulation model of the Spokane River system including Long Lake Reservoir and the pools behind Nine Mile dam, Upper Falls dam and Upriver dam for 2001 based on the calibration conducted for 1991 and 2000 data sets, (Annear et al, 2001).

• Ensure that the model accurately represents the system hydrodynamics and water quality (flow, temperature, dissolved oxygen …


Upper Spokane River Model: Model Calibration, 1991 And 2000, Chris Berger, Robert Leslie Annear, Scott A. Wells Jan 2002

Upper Spokane River Model: Model Calibration, 1991 And 2000, Chris Berger, Robert Leslie Annear, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The Washington Department of Ecology is interested in a water quality model for the Upper Spokane River system for use in developing Total Maximum Daily Loads (TMDLs). The goals of this modeling effort are to:

• Gather data to construct a computer simulation model of the Spokane River system including Long Lake Reservoir and the pools behind Nine Mile dam, Upper Falls dam and Upriver dam. • Ensure that the model accurately represents the system hydrodynamics and water quality (flow, temperature, dissolved oxygen and nutrient dynamics)

This report evaluates the model calibration and discusses issues relative to that calibration effort. …


Lower Willamette River Model: Model Calibration, Chris Berger, Robert Leslie Annear, Scott A. Wells Dec 2001

Lower Willamette River Model: Model Calibration, Chris Berger, Robert Leslie Annear, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

Water Environment Services of Clackamas County is in the process of planning upgrades on several of its wastewater treatment plants (WWTPs) which discharge into the Lower Willamette River. The goals of the modeling effort were to:

• Gather data to construct a computer simulation model of the Lower Willamette River system in order to evaluate the impact of the WWTP discharges on water quality

• Ensure that the model accurately represents the system physics and chemistry (flow, temperature, dissolved oxygen and nutrient dynamics) by model calibration

• Use the model to evaluate how to meet various future discharge scenarios for …


Lower Willamette River Model: Boundary Conditions And Model Setup, Herman G. Rodriguez, Robert Leslie Annear, Scott A. Wells, Chris Berger Nov 2001

Lower Willamette River Model: Boundary Conditions And Model Setup, Herman G. Rodriguez, Robert Leslie Annear, Scott A. Wells, Chris Berger

Civil and Environmental Engineering Faculty Publications and Presentations

Water Environment Services of Clackamas County is in the process of planning upgrades on several of its sewage treatment plants which discharge into the Lower Willamette River. The goals of the modeling effort are to:

• Gather data to construct a computer simulation model of the Lower Willamette River system including part of the Lower Columbia River and the Willamette River above the Oregon City Falls; Because of the tidal influence in the Lower Willamette River, portions of the Columbia River that might affect the Lower Willamette River water quality were also modeled. Also, a section of the Willamette River …


Upper Spokane River Model: Boundary Conditions And Model Setup, 1991 And 2000, Robert Leslie Annear, Chris Berger, Scott A. Wells Nov 2001

Upper Spokane River Model: Boundary Conditions And Model Setup, 1991 And 2000, Robert Leslie Annear, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The Washington Department of Ecology is interested in a water quality model for the Upper Spokane River system for use in developing Total Maximum Daily Loads (TMDLs). The goals of this modeling effort are to:

• Gather data to construct a computer simulation model of the Spokane River system including Long Lake Reservoir and the pools behind Nine Mile dam, Upper Falls dam and Upriver dam

• Ensure that the model accurately represents the system hydrodynamics and water quality (flow, temperature, dissolved oxygen and nutrient dynamics)

A hydrodynamic and water quality model, CE-QUAL-W2 Version 3 (Wells, 1997), is being applied …