Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Portland State University

Robotics

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Multi-Agent Deep Reinforcement Learning For Radiation Localization, Benjamin Scott Totten Aug 2023

Multi-Agent Deep Reinforcement Learning For Radiation Localization, Benjamin Scott Totten

Dissertations and Theses

For the safety of both equipment and human life, it is important to identify the location of orphaned radioactive material as quickly and accurately as possible. There are many factors that make radiation localization a challenging task, such as low gamma radiation signal strength and the need to search in unknown environments without prior information. The inverse-square relationship between the intensity of radiation and the source location, the probabilistic nature of nuclear decay and gamma ray detection, and the pervasive presence of naturally occurring environmental radiation complicates localization tasks. The presence of obstructions in complex environments can further attenuate the …


Extending The Functional Subnetwork Approach To A Generalized Linear Integrate-And-Fire Neuron Model, Nicholas Szczecinski, Roger Quinn, Alexander J. Hunt Nov 2020

Extending The Functional Subnetwork Approach To A Generalized Linear Integrate-And-Fire Neuron Model, Nicholas Szczecinski, Roger Quinn, Alexander J. Hunt

Mechanical and Materials Engineering Faculty Publications and Presentations

Engineering neural networks to perform specific tasks often represents a monumental challenge in determining network architecture and parameter values. In this work, we extend our previously-developed method for tuning networks of non-spiking neurons, the “Functional subnetwork approach” (FSA), to the tuning of networks composed of spiking neurons. This extension enables the direct assembly and tuning of networks of spiking neurons and synapses based on the network’s intended function, without the use of global optimization ormachine learning. To extend the FSA, we show that the dynamics of a generalized linear integrate and fire (GLIF) neuronmodel have fundamental similarities to those of …


3d-Printed Leg Design And Modification For Improved Support On A Quadruped Robot, Jasmin S. Collins Sep 2020

3d-Printed Leg Design And Modification For Improved Support On A Quadruped Robot, Jasmin S. Collins

Undergraduate Research & Mentoring Program

The Agile and Adaptive Robotics Lab aims to uncover the biological and physiological complexities in animal agility and adaptive control, which can be replicated through robotics and provide further applications in biology and medicine. One project within the lab focuses on understanding structure, actuation, and control through the modeling of a canine quadruped robot.

The AARL has developed a full-body quadruped robot with artificial muscles that control limb movement and a body that is built from 3D-printed parts. This specific project involved modification of these existing parts to (a) minimize deflections in the front legs, causing unwanted lateral and abduction/adduction …


Synthesizing Expressive Behaviors For Humanoid Robots, Mathias Irwan Sunardi Jul 2020

Synthesizing Expressive Behaviors For Humanoid Robots, Mathias Irwan Sunardi

Dissertations and Theses

Humanoid robots are expected to be able to communicate with expressive gestures at the same level of proficiency as humans. However, creating expressive gestures for humanoid robots is difficult and time consuming due to the high number of degrees of freedom (DOF) and the iterations needed to get the desired expressiveness.

Current robot motion editing software has varying levels of sophistication of motion editing tools ranging from basic ones that are text-only, to ones that provide graphical user interfaces (GUIs) which incorporate advanced features, such as curve editors and inverse kinematics. These tools enable users to create simple motions; but …


Audio Beat Detection With Application To Robot Drumming, Michael James Engstrom Oct 2019

Audio Beat Detection With Application To Robot Drumming, Michael James Engstrom

Dissertations and Theses

This Drumming Robot thesis demonstrates the design of a robot which can play drums in rhythm to an external audio source. The audio source can be either a pre-recorded .wav file or a live sample .wav file from a microphone. The dominant beats-per-minute (BPM) of the audio would be extracted and the robot would drum in time to the BPM. A Fourier Analysis-based BPM detection algorithm, developed by Eric Scheirer (Tempo and beat analysis of acoustical musical signals)i was adopted and implemented. In contrast to other popular algorithms, the main advantage of Scheirer's algorithm is it has …


Design Of A Canine Inspired Quadruped Robot As A Platform For Synthetic Neural Network Control, Cody Warren Scharzenberger Jul 2019

Design Of A Canine Inspired Quadruped Robot As A Platform For Synthetic Neural Network Control, Cody Warren Scharzenberger

Dissertations and Theses

Legged locomotion is a feat ubiquitous throughout the animal kingdom, but modern robots still fall far short of similar achievements. This paper presents the design of a canine-inspired quadruped robot named DoggyDeux as a platform for synthetic neural network (SNN) research that may be one avenue for robots to attain animal-like agility and adaptability. DoggyDeux features a fully 3D printed frame, 24 braided pneumatic actuators (BPAs) that drive four 3-DOF limbs in antagonistic extensor-flexor pairs, and an electrical system that allows it to respond to commands from a SNN comprised of central pattern generators (CPGs). Compared to the previous version …


Exoskeleton, Vinu Casper, Liliana Fitzpatrick Apr 2019

Exoskeleton, Vinu Casper, Liliana Fitzpatrick

Engineering and Technology Management Student Projects

This is a research about the marketing plan for exoskeleton wearable devices. The objective is to provide a meaningful Customer Value Proposition to the prospective customers.The Samsung company SWOT analysis is the basis for a marketing strategy. The exoskeleton features and market definition is included in the analysis. A competitor analysis of homogeneus exoskeletons providers is included to review the current market. An exhaustive customer analysis was performed to identify the customer needs as the input for the marketing plan development. The potential market was identified to learn about the exoskeleton market share opportunity. The exoskeleton global market is analyzed …


Biomimetic Design And Construction Of A Bipedal Walking Robot, Alexander Gabriel Steele Jun 2018

Biomimetic Design And Construction Of A Bipedal Walking Robot, Alexander Gabriel Steele

Dissertations and Theses

Human balance and locomotion control is highly complex and not well understood. To understand how the nervous system controls balance and locomotion works, we test how the body responds to controlled perturbations, the results are analyzed, and control models are developed. However, to recreate this system of control there is a need for a robot with human-like kinematics. Unfortunately, such a robotic testbed does not exist despite the numerous applications such a design would have in mobile robotics, healthcare, and prosthetics.

This thesis presents a robotic testbed model of human lower legs. By using MRI and CT scans, I designed …


An Exploration Of Software Defined Radio And Gnu Radio Companion For Use In Drone-To-Drone Communication, Amanda K. H. Voegtlin May 2018

An Exploration Of Software Defined Radio And Gnu Radio Companion For Use In Drone-To-Drone Communication, Amanda K. H. Voegtlin

Undergraduate Research & Mentoring Program

In a world that increasingly relies on automation and intelligent robotics, there is a need for drones to expand their independence and adaptability in navigating their environments. One approach to this problem is the use of wireless communication between units in order to coordinate their sensor data and build real-time maps of the environments they are navigating. However, especially indoors, relying on a fixed transmission tower to provide data to the units faces connectivity challenges.

The purpose of this research was to determine the fitness of an on-drone assembly that uses the the NI B200mini software-defined radio board and Gnu …


Real-Time Object Detection And Tracking On Drones, Tu Le May 2018

Real-Time Object Detection And Tracking On Drones, Tu Le

Undergraduate Research & Mentoring Program

Unmanned aerial vehicles, also known as drones, have been more and more widely used in recent decades because of their mobility. They appear in many applications such as farming, search and rescue, entertainment, military, and so on. Such high demands for drones lead to the need of developments in drone technologies. Next generations of commercial and military drones are expected to be aware of surrounding objects while flying autonomously in different terrains and conditions. One of the biggest challenges to drone automation is the ability to detect and track objects of interest in real-time. While there are many robust machine …


Vision-Based Motion For A Humanoid Robot, Khalid Abdullah Alkhulayfi Jul 2016

Vision-Based Motion For A Humanoid Robot, Khalid Abdullah Alkhulayfi

Dissertations and Theses

The overall objective of this thesis is to build an integrated, inexpensive, human-sized humanoid robot from scratch that looks and behaves like a human. More specifically, my goal is to build an android robot called Marie Curie robot that can act like a human actor in the Portland Cyber Theater in the play Quantum Debate with a known script of every robot behavior. In order to achieve this goal, the humanoid robot need to has degrees of freedom (DOF) similar to human DOFs. Each part of the Curie robot was built to achieve the goal of building a complete humanoid …


Mobile Robot Localization Based On Kalman Filter, Omar Q. Mohsin Jan 2014

Mobile Robot Localization Based On Kalman Filter, Omar Q. Mohsin

Dissertations and Theses

Robot localization is one of the most important subjects in the Robotics science. It is an interesting and complicated topic. There are many algorithms to solve the problem of localization. Each localization system has its own set of features, and based on them, a solution will be chosen. In my thesis, I want to present a solution to find the best estimate for a robot position in certain space for which a map is available. The thesis started with an elementary introduction to the probability and the Gaussian theories. Simple and advanced practical examples are presented to illustrate each concept …


Evolving Machine Morality Strategies Through Multiagent Simulations, David Burke Jun 2011

Evolving Machine Morality Strategies Through Multiagent Simulations, David Burke

Systems Science Friday Noon Seminar Series

There is a general consensus among robotics researchers that the world of the future will be filled with autonomous and semi-autonomous machines. There is less of a consensus, though, on the best approach to instilling a sense of 'machine morality' in these systems so that they will be able to have effective interactions with humans in an increasingly complex world. In my talk, we take a brief look at some existing approaches to computational ethics, and then describe work we've undertaken creating multiagent simulations involving moral decision-making during strategic interactions. In these simulations, agents make choices about whether to cooperate …


An Emotional Mimicking Humanoid Biped Robot And Its Quantum Control Based On The Constraint Satisfaction Model, Quay Williams, Scott Bogner, Michael Kelley, Carolina Castillo, Martin Lukac, Dong Hwa Kim, Jeff S. Allen, Mathias I. Sunardi, Sazzad Hossain, Marek Perkowski May 2007

An Emotional Mimicking Humanoid Biped Robot And Its Quantum Control Based On The Constraint Satisfaction Model, Quay Williams, Scott Bogner, Michael Kelley, Carolina Castillo, Martin Lukac, Dong Hwa Kim, Jeff S. Allen, Mathias I. Sunardi, Sazzad Hossain, Marek Perkowski

Electrical and Computer Engineering Faculty Publications and Presentations

The paper presents a humanoid robot that responds to human gestures seen by a camera. The behavior of the robot can be completely deterministic as specified by a Finite State Machine that maps the sensor signals to the effector signals. This model is further extended to the constraints-satisfaction based model that links robots vision, motion, emotional behavior and planning. One way of implementing this model is to use adiabatic quantum computer which quadratically speeds-up every constraint problem and will be thus necessary to solve large problems of this type. We propose to use the remotely-connected Orion system by DWAVE Corporation.


Constructive Induction Machines For Data Mining, Marek Perkowski, Stanislaw Grygiel, Qihong Chen, Dave Mattson Mar 1999

Constructive Induction Machines For Data Mining, Marek Perkowski, Stanislaw Grygiel, Qihong Chen, Dave Mattson

Electrical and Computer Engineering Faculty Publications and Presentations

"Learning Hardware" approach involves creating a computational network based on feedback from the environment (for instance, positive and negative examples from the trainer), and realizing this network in an array of Field Programmable Gate Arrays (FPGAs). Computational networks can be built based on incremental supervised learning (Neural Net training) or global construction (Decision Tree design). Here we advocate the approach to Learning Hardware based on Constructive Induction methods of Machine Learning (ML) using multivalued functions. This is contrasted with the Evolvable Hardware (EHW) approach in which learning/evolution is based on the genetic algorithm only.


Two Dimensional And Three Dimensional Path Planning In Robotics, Hyun Suk Kim Jan 1988

Two Dimensional And Three Dimensional Path Planning In Robotics, Hyun Suk Kim

Dissertations and Theses

A methodology for 2D and 3D collision free path planning algorithm in a structured environment is presented. The isolated free convex areas are represented as a nodes in a graph, and a graph traversal strategy that dynamically allocates costs to graph path is used. Modification of the algorithm for small computational time and optimality is discussed. The 3D path planning is done in the three orthogonal two-dimensional projections of a 3D environment. Collision checking to increase the optimality for 3D paths is done in each of the three orthogonal two-dimensional subspaces.