Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Doctoral Dissertations

2020

Discipline
Keyword

Articles 1 - 30 of 95

Full-Text Articles in Engineering

Fabrication And Characterization Of Multifunctional Composites, Aditya R. Thakur Jan 2020

Fabrication And Characterization Of Multifunctional Composites, Aditya R. Thakur

Doctoral Dissertations

“This study details the research to facilitate fabrication and characterization of novel structural composites reinforced with carbon fibers. Across industries, materials with high performance-to-weight ratio are sought after. Using carbon fibers as secondary phases in these proposed composites, specific characteristics can be tailored in these materials to manufacture strong, lightweight, high performance structures. The first part of the research focused on the improvement in the mechanical properties of the composites using carbon fiber reinforcement. As a part of this study, toughened ceramic composites with predictable failure patterns were produced using carbon fiber inclusions. A closed-form analytical model was developed to …


Factors Impacting The Transport And Enhanced Oil Recovery Potential Of Polymeric Nanogel In Sandstone, Haifeng Ding Jan 2020

Factors Impacting The Transport And Enhanced Oil Recovery Potential Of Polymeric Nanogel In Sandstone, Haifeng Ding

Doctoral Dissertations

"Enhanced oil recovery (EOR) using nanometer-sized particles has drawn great attention in the oil industry because of their various advantages brought by size. However, their applications on a field scale are very limited, especially for deformable nanoparticles. The objective of this research is to explore the transport behavior of deformable polymeric nanoparticles (nanogel), the factors impacting these behavior, and their EOR potentials. First, 240 published nanoparticle core flooding experiment data were collected and analyzed about the extent to what the nanoparticles can improve oil recovery. Results show that on the laboratory scale the incremental oil recovery could be as high …


Predicting Complex System Behavior Using Hybrid Modeling And Computational Intelligence, Vinayaka Gude Jan 2020

Predicting Complex System Behavior Using Hybrid Modeling And Computational Intelligence, Vinayaka Gude

Doctoral Dissertations

“Modeling and prediction of complex systems is a challenging problem due to the sub-system interactions and dependencies. This research examines combining various computational intelligence algorithms and modeling techniques to provide insights into these complex processes and allow for better decision making. This hybrid methodology provided additional capabilities to analyze and predict the overall system behavior where a single model cannot be used to understand the complex problem. The systems analyzed here are flooding events and fetal health care. The impact of floods on road infrastructure is investigated using graph theory, agent-based traffic simulation, and Long Short-Term Memory deep learning to …


System Efficient Esd Design Concept For Soft Failures, Giorgi Maghlakelidze Jan 2020

System Efficient Esd Design Concept For Soft Failures, Giorgi Maghlakelidze

Doctoral Dissertations

"This research covers the topic of developing a systematic methodology of studying electrostatic discharge (ESD)-induced soft failures. ESD-induced soft failures (SF) are non-destructive disruptions of the functionality of an electronic system. The soft failure robustness of a USB3 Gen 1 interface is investigated, modeled, and improved. The injection is performed directly using transmission line pulser (TLP) with varying: pulse width, amplitude, polarity. Characterization provides data for failure thresholds and a SPICE circuit model that describes the transient voltage and current at the victim. Using the injected current, the likelihood of a SF is predicted. ESD protection by transient voltage suppressor …


Strengthening Qc Relaxations Of Optimal Power Flow Problems By Exploiting Various Coordinate Changes, Mohammad Rasoul Narimani Jan 2020

Strengthening Qc Relaxations Of Optimal Power Flow Problems By Exploiting Various Coordinate Changes, Mohammad Rasoul Narimani

Doctoral Dissertations

"Motivated by the potential for improvements in electric power system economics, this dissertation studies the AC optimal power flow (AC OPF) problem. An AC OPF problem optimizes a specified objective function subject to constraints imposed by both the non-linear power flow equations and engineering limits. The difficulty of an AC OPF problem is strongly connected to its feasible space's characteristics. This dissertation first investigates causes of nonconvexities in AC OPF problems. Understanding typical causes of nonconvexities is helpful for improving AC OPF solution methodologies.

This dissertation next focuses on solution methods for AC OPF problems that are based on convex …


Design Of X-Ray Source For Real-Time Computed Tomography, Wesley William Tucker Jan 2020

Design Of X-Ray Source For Real-Time Computed Tomography, Wesley William Tucker

Doctoral Dissertations

"The reduction of motion blur in computed tomography (CT) drives the current research for multisource CT. Due to their compact nature, the current multisource systems utilize stationary angled anodes. Unfortunately, these configurations neither simplify the imaging geometry, nor satisfy the need for managing the high thermal loads demanded by real-time CT (30 acquisition frames per second). To add to the current field of knowledge, two x-ray tube concepts are presented in this dissertation. First, a simulation of transient thermal analysis was performed on a compact transmission-type x-ray tube anode operating in pulse-mode. A correlation was found between deposited beam power …


Modeling A Nuclear Research Reactor And Radiation Dose Estimation In An Accident Scenario, Abdulaleem Abdulmajeed Bugis Jan 2020

Modeling A Nuclear Research Reactor And Radiation Dose Estimation In An Accident Scenario, Abdulaleem Abdulmajeed Bugis

Doctoral Dissertations

“A detailed, flexible three-dimensional (3D) model of the Missouri S&T Reactor (MSTR) with a heterogeneous core geometry was developed using the Standardized Computer Analyses for Licensing Evaluation (SCALE). A Graphical User Interface (GUI) was developed for SCALE, which allows the user to generate an input file automatically. The SCALE model was validated with a Monte Carlo N-Particle Transport (MCNP) model of the MSTR. The validation process was based on the criticality calculations using the Criticality Safety Analysis Sequence (CSAS6). Three geometrical models were examined. The SCALE model that has the full detailed geometry showed a good agreement with the MCNP …


An Emi Characterization And Modeling Study For Consumer Electronics And Integrated Circuits, Chunyu Wu Jan 2020

An Emi Characterization And Modeling Study For Consumer Electronics And Integrated Circuits, Chunyu Wu

Doctoral Dissertations

“As internet-of-things (IoT) applications surge, wireless connectivity becomes an essential part of the network. Smart home, one of the most promising application scenarios of IoT, will improve our life quality enormously. However, electromagnetic interference (EMI) to the receiving antenna, either from another electronic product or from a module/an integrated circuit(IC) inside the same wireless device, will degrade the performance of wireless connectivity, thus influencing the user experience. Characterization and modeling of the EMI become increasingly important.

In the first part, an improved method to extract equivalent dipoles from magnitude- only electromagnetic-field data based on the genetic algorithm and back-and-forth iteration …


Modification Of The Optical Response Of Alpha Quartz Via The Deposition Of Gold Nanoparticles In Etched Ion Tracks, Maria C. Garcia Toro Jan 2020

Modification Of The Optical Response Of Alpha Quartz Via The Deposition Of Gold Nanoparticles In Etched Ion Tracks, Maria C. Garcia Toro

Doctoral Dissertations

”This study addresses the experimental methods used to develop and characterize plasmonic devices capable of modifying the optical response of alpha quartz via the deposition of gold nanoparticles in etched ion tracks. In the first part of the research, the microstructural characterization of latent and etched ion tracks produced in alpha quartz (α-SiO2) is presented. Single crystals of α-SiO2 were irradiated with two highly energetic ions to different nominal fluences. As expected, the morphology of the resulting ion tracks depends on the energy of the incident ion and their stopping powers within the target material. Subsequent chemical …


Removal Of Non-Metallic Inclusions From Molten Steel By Ceramic Foam Filtration, Soumava Chakraborty Jan 2020

Removal Of Non-Metallic Inclusions From Molten Steel By Ceramic Foam Filtration, Soumava Chakraborty

Doctoral Dissertations

”Ceramic filters are routinely used in steel foundries to remove non-metallic inclusions from steel melt. Removal efficiency for both solid and liquid inclusions by magnesia-stabilized zirconia foam filters (10ppi) were evaluated and distribution of the captured inclusions through the filter thickness was also investigated. A mold design was developed using a commercial computational fluid dynamics software package to produce two castings that fill simultaneously, one with a filter and the other without a filter, from a single ladle pour, while also matching the fill rates and avoid turbulence and reoxidation during pouring. An industrial-scale experiment was also performed to investigate …


Modeling And Optimization Of Froth Flotation Of Low-Grade Phosphate Ores: Experiments And Machine Learning, Ashraf Alsafasfeh Jan 2020

Modeling And Optimization Of Froth Flotation Of Low-Grade Phosphate Ores: Experiments And Machine Learning, Ashraf Alsafasfeh

Doctoral Dissertations

”In this research work, bench-scale and micro-scale flotation tests were conducted to separate “minerals from silicate minerals using direct and reverse flotation approaches, respectively. Experiments were conducted at different flotation conditions including reagents’ type, reagents’ dosages, pulp’s pH, and flotation time.

In the direct flotation process, two polymers were selected to promote the depression of silicates: hybrid polyacrylamide-based polymers (Hy-PAM) and chitosan. Results indicated that the highest recovery of P2O5 (86.82%) was obtained when the Hy-PAM polymer was used compared with 66.7% and 40% when chitosan and commercial inorganic depressant were used, respectively. The experimental datasets obtained …


Improved Attenuation And Crosstalk Modeling Techniques For High-Speed Channels, Shaohui Yong Jan 2020

Improved Attenuation And Crosstalk Modeling Techniques For High-Speed Channels, Shaohui Yong

Doctoral Dissertations

”As digital systems are moving in the direction of faster data transmission rate and higher density of circuits, the problem of the far-end crosstalk (FEXT) and frequency-dependent attenuation are becoming the major factors that limit signal integrity performance. This research is focusing on providing several more comprehensive and accurate modeling approaches for striplines on fabricated printed circuit board (PCB). By characterizing the dielectric permittivity of prepreg and core, dielectric loss tangent, and copper foil surface roughness using measurement data, a better agreement between the stripline model and measurement is achieved. First, a method is proposed to extract dielectric loss tangent …


Investigating The Factors Impacting The Success Of Immiscible Carbon Dioxide Injection In Unconventional Shale Reservoirs: An Experimental Study, Sherif M. Fakher Jan 2020

Investigating The Factors Impacting The Success Of Immiscible Carbon Dioxide Injection In Unconventional Shale Reservoirs: An Experimental Study, Sherif M. Fakher

Doctoral Dissertations

"Unconventional shale reservoirs are currently gaining significant interest due to the huge hydrocarbon volumes that they bear. Enhanced oil recovery (EOR) techniques have been suggested to increase recovery from shale reservoirs. One of the most promising EOR methods is gas EOR (GEOR), most notably carbon dioxide (CO2). Not only can CO2 increase oil recovery by interacting with the oil and the shale, but it has also been shown to adsorb to the shale rock and thus is effective in both EOR applications and also carbon storage purposes. This research aims to experimentally investigate several of the interactions …


Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin Jan 2020

Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin

Doctoral Dissertations

“The current treatment methods in cancer are associated with toxicity in healthy tissues, partial therapeutic response, drug resistance and finally recurrence of the disease. The cancer drugs are challenged by non-specific binding, undesired toxicity in healthy cells, low therapeutic index and finally poor therapeutic outcome. In this work, a targeted nanoscale therapeutic system Antibody Drug Nanoparticle (ADN) was engineered to selectively inhibit the breast cancer cell growth with reduced toxicity in healthy cells. The ADNs were designed by synthesizing rod shaped anoparticles using pure chemotherapeutic drug and covalently conjugating a therapeutic monoclonal antibody (mAb) on the surface of the drug …


Continuous-Flow Synthesis Of Fine Chemicals And Pharmaceutical Compounds Over Intelligent Organocatalysts With Bifunctional Reactivity, Abdo-Alslam Alwakwak Jan 2020

Continuous-Flow Synthesis Of Fine Chemicals And Pharmaceutical Compounds Over Intelligent Organocatalysts With Bifunctional Reactivity, Abdo-Alslam Alwakwak

Doctoral Dissertations

“Many biological systems that utilize organic active sites to catalyze reactions under mild conditions invoke cooperative catalytic pathways, whereby two or more active sites work together to activate the reactant(s). The use of cooperative (bifunctional) catalysts and continuous flow chemistry (a reaction within the narrow channels of a micro‐ or microfluidic reactor) are commonplace in sustainable chemical transformation and attract a great deal of interest with respect to economic and environmentally-sustainable production of fine chemicals, pharmaceuticals, and agrochemicals, water treatment, as well as upgrading of biomass feedstocks. Although, some methods have been developed for immobilization of bifunctional catalysts for cooperative …


Transition Metal Chalcogenide Hybrid Systems As Catalysts For Energy Conversion And Biosensing, Siddesh Umapathi Jan 2020

Transition Metal Chalcogenide Hybrid Systems As Catalysts For Energy Conversion And Biosensing, Siddesh Umapathi

Doctoral Dissertations

"Generation of hydrogen and oxygen through catalyst-aided water splitting which has immense applications in metal air batteries, PEM fuel cells and solar to fuel energy production, has been one of the critical topics in recent times. The state of art oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER) catalysts are mostly comprised of precious metals. The current challenge lies in replacing these precious metal-based catalysts with non-precious earth-abundant materials without compromising catalytic efficiency.

This research explores mixed metal selenides containing Fe-Ni, Fe-Co and RhSe which were hydrothermally synthesized and/or electrodeposited and tested for OER and ORR …


Critical Success Factors And Risk Mitigation Strategy For New Product Development, Rodney A. Ewing Jan 2020

Critical Success Factors And Risk Mitigation Strategy For New Product Development, Rodney A. Ewing

Doctoral Dissertations

”Success in new product development (NPD) offers a competitive and comparative advantage in the marketplace. A primary objective in an NPD project is to launch world class products with minimal risk. To deliver the superior quality and performance customers require, a company must develop the right NPD structure and framework for seamless execution by the NPD project teams throughout the product lifecycle. Companies must understand how to identify and mitigate risk to enable the success of their NPD projects. The costs to develop new products are often a considerable portion of an organization’s budget; however, studies have shown only 60 …


Time- And Space-Dependent Uncertainty Analysis And Its Application In Lunar Plasma Environment Modeling, Xinpeng Wei Jan 2020

Time- And Space-Dependent Uncertainty Analysis And Its Application In Lunar Plasma Environment Modeling, Xinpeng Wei

Doctoral Dissertations

”During an engineering system design, engineers usually encounter uncertainties that ubiquitously exist, such as material properties, dimensions of components, and random loads. Some of these parameters do not change with time or space and hence are time- and space-independent. However, in many engineering applications, the more general time- and space-dependent uncertainty is frequently encountered. Consequently, the system exhibits random time- and space-dependent behaviors, which may result in a higher probability of failure, lower average lifetime, and/or worse robustness. Therefore, it is critical to quantify uncertainty and predict how the system behaves under time- and space- dependent uncertainty. The objective of …


Hydrokinetic Turbine Composite Blades And Sandwich Structures: Damage Evaluation And Numerical Simulation, Mokhtar Fal Jan 2020

Hydrokinetic Turbine Composite Blades And Sandwich Structures: Damage Evaluation And Numerical Simulation, Mokhtar Fal

Doctoral Dissertations

“Composite materials are gaining interest due to their high strength to weight ratio. This study deals with both experimental and numerical approaches to cover the aspects of the failure of composite materials in hydrokinetic turbine applications. In Part I, the location and magnitude of failure in the horizontal axis water turbine carbon fiber-reinforced polymer (CFRP) composite blades with different laminate stacking sequences were investigated. Two lay-up orientations were adopted for this work ([0⁰]4 and [0⁰/90⁰]2s). A finite element analysis model was generated to examine the stresses along the blade. Five angles were introduced to study the effect …


Characterization Of Neutron Irradiated Accident Tolerant Nuclear Fuel Cladding Silicon Carbide & Radiation Detector Deadtime, Bader Almutairi Jan 2020

Characterization Of Neutron Irradiated Accident Tolerant Nuclear Fuel Cladding Silicon Carbide & Radiation Detector Deadtime, Bader Almutairi

Doctoral Dissertations

“In part I, the pulse shape characteristics generated by a Geiger Muller (GM) detector and recorded by an oscilloscope manually, were investigated. The objective of part I was (1) to find a correlation between pulse shape and the operating voltage; and (2) to assess if pulse shape properties followed distinct patterns comparable to detector deadtime findings reported by a previous study. It was observed that (1) there is a strong correlation between pulse shape and operating voltage, and (2) pulse shape falls in three distinct regions similar to detector deadtime. Furthermore, parts II and III are companions and share the …


Optimal Adaptive Control Of Time-Delay Dynamical Systems With Known And Uncertain Dynamics, Rohollah Moghadam Jan 2020

Optimal Adaptive Control Of Time-Delay Dynamical Systems With Known And Uncertain Dynamics, Rohollah Moghadam

Doctoral Dissertations

"Delays are found in many industrial pneumatic and hydraulic systems, and as a result, the performance of the overall closed-loop system deteriorates unless they are explicitly accounted. It is also possible that the dynamics of such systems are uncertain. On the other hand, optimal control of time-delay systems in the presence of known and uncertain dynamics by using state and output feedback is of paramount importance. Therefore, in this research, a suite of novel optimal adaptive control (OAC) techniques are undertaken for linear and nonlinear continuous time-delay systems in the presence of uncertain system dynamics using state and/or output feedback. …


Analysis And Modeling Of Power Supply Induced Jitter For High Speed Driver And Low Dropout Voltage Regulator, Yin Sun Jan 2020

Analysis And Modeling Of Power Supply Induced Jitter For High Speed Driver And Low Dropout Voltage Regulator, Yin Sun

Doctoral Dissertations

”With the scaling of power supply voltage levels and improving trans-conductance of drivers, the sensitivity of drivers to power supply induced delays has increased. The power supply induced jitter (PSIJ) has become one of the major concerns for high-speed system. In this work, the PSIJ analysis and modeling method are proposed for high speed drivers and the system with on-die low dropout (LDO) voltage regulator. In addition, a jitter-aware target impedance concept is proposed for power distribution network (PDN) design to correlate the PSIJ with PDN parasitic.

The proposed PSIJ analysis model is based on the driver power supply rejection …


Imaging In Karst Terrain Using The Electrical Resistivity Tomography (Ert) And Multi-Channel Analysis Of Surface Waves (Masw) Methods, Hassan Abdullah Alzahrani Jan 2020

Imaging In Karst Terrain Using The Electrical Resistivity Tomography (Ert) And Multi-Channel Analysis Of Surface Waves (Masw) Methods, Hassan Abdullah Alzahrani

Doctoral Dissertations

"Electrical Resistivity Tomography (ERT) and Multi-channel Analysis of Surface Waves (MASW) methods were used to image the subsurface in karst terrain in the southeast of Missouri. A SuperSting R8 system was used to acquire the ERT profiles; a multi-channel engineering seismograph was used to acquire the MASW data. The latter data were used to constrain and verify the ERT interpreted depth to top-of-rock and soil thickness. The ERT data were used to delineate the soil/rock interface and to identify zones of anomalously high moisture content within the bedrock.

The primary objective of the research was to determine the cause of …


Observer-Based Event-Triggered And Set-Theoretic Neuro-Adaptive Controls For Constrained Uncertain Systems, Abdul Ghafoor Jan 2020

Observer-Based Event-Triggered And Set-Theoretic Neuro-Adaptive Controls For Constrained Uncertain Systems, Abdul Ghafoor

Doctoral Dissertations

"In this study, several new observer-based event-triggered and set-theoretic control schemes are presented to advance the state of the art in neuro-adaptive controls. In the first part, six new event-triggered neuro-adaptive control (ETNAC) schemes are presented for uncertain linear systems. These comprehensive designs offer flexibility to choose a design depending upon system performance requirements. Stability proofs for each scheme are presented and their performance is analyzed using benchmark examples. In the second part, the scope of the ETNAC is extended to uncertain nonlinear systems. It is applied to a case of precision formation flight of the microsatellites at the Sun-Earth/Moon …


Experimental And Modeling Studies Using Packed Bed Reactors: Liquid Phase Ethylene Production By Hydrogenation Of Acetylene, Humayun Shariff Jan 2020

Experimental And Modeling Studies Using Packed Bed Reactors: Liquid Phase Ethylene Production By Hydrogenation Of Acetylene, Humayun Shariff

Doctoral Dissertations

"Gas-phase catalytic hydrogenation of acetylene to produce ethylene, commonly practiced in industries, has green oil formation, which leads to catalyst deactivation and sometimes reactor runaway risks due to high exothermicity. To overcome these issues as well as to increase the selectivity and conversion, liquid-phase hydrogenation of acetylene was investigated in packed bed reactors (PBR) using a commercial catalyst. The reactor performance of two-phase flow PBRs was assessed experimentally complemented by a validated mathematical model at different scales.

The selective hydrogenation of acetylene in the liquid phase over a commercial 0.5 wt% Pd/Al2O3 catalyst was investigated in a …


Impact Of Turbulence Models And Shape Parameterization On Robust Aerodynamic Shape Optimization, Aslihan Vuruskan Jan 2020

Impact Of Turbulence Models And Shape Parameterization On Robust Aerodynamic Shape Optimization, Aslihan Vuruskan

Doctoral Dissertations

"Aerodynamic design optimization is typically performed at fixed flight conditions, without considering the variation and uncertainty in operating conditions. The objective of robust aerodynamic optimization is to design an aerodynamic configuration, which will keep its optimum performance under varying conditions such as the speed of aircraft. The primary goal of this study was to investigate the impact of turbulence models used in RANS simulations on the 2-D airfoil and 3-D wing designs obtained with gradient-based deterministic and robust optimization in transonic, viscous, turbulent flows. The main contribution of this research to the aerodynamic design area was to quantify the impact …


Experimental Investigation Of Ionic Liquid Mixtures For Electrospray Propulsion, Mitchell J. Wainwright Jan 2020

Experimental Investigation Of Ionic Liquid Mixtures For Electrospray Propulsion, Mitchell J. Wainwright

Doctoral Dissertations

"In recent years, there has been a dramatic increase in the number of small satellites (namely MicroSats, NanoSats, and CubeSats) in earth orbit; many of these are launched without propulsion systems. Multi-mode propulsion systems, capable of operating in either chemical or electric mode, have been proposed as attractive candidates for use in small satellites. Such systems are mass and volume optimal and flexible in terms of thrust requirements. Most previous work on multi-mode systems has focused on chemical mode performance.The work in this dissertation focuses on the electric mode performance of these propulsion systems.

The work in this research is …


Trajectory Control Of A Wheeled Robot Using Interaction Forces For Intuitive Overground Human-Robot Interaction, George Leno Holmes Jr. Jan 2020

Trajectory Control Of A Wheeled Robot Using Interaction Forces For Intuitive Overground Human-Robot Interaction, George Leno Holmes Jr.

Doctoral Dissertations

"Effective and intuitive physical human robot interaction (pHRI) requires an understanding of how humans communicate movement intentions with one another. It has been suggested that humans can guide another human by hand through complex tasks using force information only. However, no clear and applicable paradigm has been set forth to understand these relationships. While the human partner can readily understand and adhere to this expectation, it would be difficult for anyone to explain their intuitive motions with strict rules, algorithms, or steps. Uncovering such a procedural framework for the control of robotic systems to execute expected performance simply from force …


An Integrated Wellbore Stability Study To Mitigate Expensive Wellbore Instability Problems While Drilling Into Zubair Shale/Sand Sequence, Southern Iraq, Ahmed Khudhair Abbas Jan 2020

An Integrated Wellbore Stability Study To Mitigate Expensive Wellbore Instability Problems While Drilling Into Zubair Shale/Sand Sequence, Southern Iraq, Ahmed Khudhair Abbas

Doctoral Dissertations

”The Zubair Formation is the most prolific reservoir in Iraq, which is comprised of sandstones interbedded with shale sequences. Due to the weak nature of the shale sequence, the instability of a wellbore is one of the most critical challenges that continuously appears during drilling across this formation. Historically, over 90% of wellbore problems in the Zubair Formation were due to wellbore instability. Problems associated with wellbore instability, such as tight hole, shale caving, stuck logging tools along with subsequent fishing, stuck pipe, and sidetracking result in increasing the non-productive time. This non-productive time has cost an enormous amount of …


Understanding The Deformation Mechanisms In Ni-Based Superalloys With Using Crystal Plasticity Finite Element Method, Tianju Chen Jan 2020

Understanding The Deformation Mechanisms In Ni-Based Superalloys With Using Crystal Plasticity Finite Element Method, Tianju Chen

Doctoral Dissertations

“Ni-based superalloy is considered as a good candidate due to its excellent resistance to elevated temperature deformation for long term period application. Understanding the deformation and failure mechanisms of Ni-Based superalloys is very helpful for providing design guidelines for processing Ni-based superalloys. Experimental characterization indicates that the deformation mechanisms of Ni based superalloy is strongly microstructure dependent. Besides, damage transform from the void nucleation to the macro cracks by voids growth leading to the failure of the Ni-based superalloys are also showing strong microstructure sensitivity. Therefore, this work focuses on the prediction and comprehension of the deformation and void growth …