Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Mechanical Engineering

Simulation

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Use Of Time Varying Dynamics In Neural Network To Solve Multi-Target Classification, S. N. Balakrishnan, J. Rainwater Jan 1992

Use Of Time Varying Dynamics In Neural Network To Solve Multi-Target Classification, S. N. Balakrishnan, J. Rainwater

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Several types of solutions exist for multiple target tracking. These techniques are computation-intensive and in some cases very difficult to operate online. The authors report on a backpropagation neural network which has been successfully used to identify multiple moving targets using kinematic data (time, range, range-rate and azimuth angle) from sensors to train the network. Preliminary results from simulated scenarios show that neural networks are capable of learning target identification for three targets during the time period used during training and a time period shortly after. This effective classification period can be extended by the use of networks in coordination …


Decoupled Dynamics For Control And Estimation, S. N. Balakrishnan Jan 1991

Decoupled Dynamics For Control And Estimation, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Decoupling of the dynamical equations in polar coordinates is used to develop a control scheme for use in target-intercept problems with passive measurements. By defining a pseudo control variable in the radial coordinate, the radial dynamics is made independent of the transverse dynamics. After solving for the radial control, the transverse control is determined through solutions to a two-point boundary value problem. Numerical results from a six degree-of-freedom simulation which used the decoupled control indicate that it is better than the completely Cartesian coordinate control for most of the cases considered. Decoupled control, though, is obtained iteratively through a two-point …


Development Of Helicopter Flight Path Models, Alfred Fermelia, Donald A. Gyorog, V. J. Flanigan Jan 1976

Development Of Helicopter Flight Path Models, Alfred Fermelia, Donald A. Gyorog, V. J. Flanigan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The objective of this paper is to present general techniques for simulating helicopter flight trajectory response. During flight the pilot manipulates the controls either to trim the helicopter for steady flight by balancing the external forces and moments or to produce a desired maneuver by controlling the unbalance of these forces and moments. Discussions of the physical phenomena involved with the aerodynamics of the rotors and fuselage are given in [1] through [3]. The simulated control function will be composed forward-aft cyclic, lateral cyclic, pedal, and collective. This control will be represented by the vector