Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Mechanical Engineering

Optimal Control

1994

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Use Of Hopfield Neural Networks In Optimal Guidance, S. N. Balakrishnan, James Edward Steck Jan 1994

Use Of Hopfield Neural Networks In Optimal Guidance, S. N. Balakrishnan, James Edward Steck

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A Hopfield neural network architecture is developed to solve the optimal control problem for homing missile guidance. A linear quadratic optimal control problem is formulated in the form of an efficient parallel computing device known as a Hopfield neural network. Convergence of the Hopfield network is analyzed from a theoretical perspective, showing that the network, as a dynamical system approaches a unique fixed point which is the solution to the optimal control problem at any instant during the missile pursuit. Several target-intercept scenarios are provided to demonstrate the use of the recurrent feedback neural net formulation.


Approximate Analytical Guidance Schemes For Homing Missiles, S. N. Balakrishnan, Donald T. Stansbery Jan 1994

Approximate Analytical Guidance Schemes For Homing Missiles, S. N. Balakrishnan, Donald T. Stansbery

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Closed form solutions for the guidance laws are developed using modern control techniques. The resulting two-point boundary value problem is solved through the use of the state transition matrix of the intercept dynamics. Results are presented in terms of a design parameter.