Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Engineering

Influence Of Input Energy On Mechanical Properties Of Laser Powder Bed Fused Aisi 304l Stainless Steel, Tan Pan Jan 2020

Influence Of Input Energy On Mechanical Properties Of Laser Powder Bed Fused Aisi 304l Stainless Steel, Tan Pan

Masters Theses

“Powder Bed Fusion process with selective laser melting technique is popularly adopted in additive manufacturing area on account of its layer by layer manufacturing fashion capable of fabricating components with complex internal and external geometries and structures. However, the process-property map is unique and vital for different materials and AM configurations used for fabrication. The process parameter is identified as a significant factor that heavily influences the properties and performances of the printed materials.

Current work aimed to extend the existing knowledge on Laser Powder Bed Fusion fabricated AISI 304L by accessing the influence of varying energy input on the ...


A Framework For A Successful Additive Repair System, Todd E. Sparks Jan 2020

A Framework For A Successful Additive Repair System, Todd E. Sparks

Doctoral Dissertations

“The goal of this research is to generate a revolutionary improvement to the usability and usefulness of additive repair technology by integrating a set of tools into a seamless work flow. Insufficient automation in the current repair process is a huge hurdle in achieving cost-effective, reliable repairs. Many opportunities have been missed due to inconsistency, quality issues and lack of robustness and flexibility. The present work addresses deficiencies in preparatory steps such as 2D and 3D geometry processing, parameter estimation, and path planning as well as on-machine execution of the path plan. The bulk of the effort is focused on ...


A Displacement Controlled Fatigue Test Method For Additively Manufactured Materials, Mohammad Masud Parvez, Yitao Chen, Sreekar Karnati, Connor Coward, Joseph William Newkirk, Frank W. Liou Aug 2019

A Displacement Controlled Fatigue Test Method For Additively Manufactured Materials, Mohammad Masud Parvez, Yitao Chen, Sreekar Karnati, Connor Coward, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

A novel adaptive displacement-controlled test setup was developed for fatigue testing on mini specimens. In property characterization of additive manufacturing materials, mini specimens are preferred due to the specimen preparation, and manufacturing cost but mini specimens demonstrate higher fatigue strength than standard specimens due to the lower probability of material defects resulting in fatigue. In this study, a dual gauge section Krouse type mini specimen was designed to conduct fatigue tests on additively manufactured materials. The large surface area of the specimen with a constant stress distribution and increased control volume as the gauge section may capture all different types ...


A Framework For Process Inspection Of Metal Additive Manufacturing, Chih-Kun Cheng, Frank W. Liou, Yi-Chien Cheng, Sheng-Chih Shen Feb 2019

A Framework For Process Inspection Of Metal Additive Manufacturing, Chih-Kun Cheng, Frank W. Liou, Yi-Chien Cheng, Sheng-Chih Shen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this paper, we propose a process inspection framework for metal additive manufacturing (AM) processes. AM, also known as 3D printing, is the process of joining materials to make objects on the basis of 3D model data and is envisioned to play a strategic role in maintaining economic and scientific dominance. Different from conventional manufacturing methods, the AM process is a point-by-point and layer-by-layer manufacturing. Thus, there are many opportunities to generate a process error that can cause quality issues in an AM part. A systematic AM process inspection is needed to yield acceptable performance of the part. The critical ...


Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu Jul 2018

Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Lattice structures fabricated by Additive Manufacturing (AM) processes are promising for many applications, such as lightweight structures and energy absorbers. However, predicting and controlling of their mechanical behaviors is challenging due to the complexity of modeling and the uncertainties exist in the manufacturing process. In this paper, we explore the possibilities enabled by controlling the local densities. A set of lattice structures with different density gradients are designed using an implicit isosurface equation, and they are manufactured by Selective Laser Melting (SLM) process with 304L stainless steel. Finite element analysis and compression test are used to evaluate their mechanical properties ...


Designed Extrudate For Ceramic Additive Manufacturing, Devin Mcmillen Jan 2018

Designed Extrudate For Ceramic Additive Manufacturing, Devin Mcmillen

Masters Theses

"The objective of this thesis work was to design ceramic paste systems that assist in achieving a high theoretical density ( > 95%) after deposition by a novel additive manufacturing process, i.e. Ceramic On-Demand Extrusion (CODE). The work is encompassed in five main sections: Sections 1 and 2 provide an introduction and literature review of relevant topics for the following sections of experimentation. Section 3 provides an analysis of a reaction chemistry to identify three discrete materials that could be combined via CODE and result in zirconium diboride (ZrB2) post-sintering. Section 4 describes the development of a high solids loading ...


Development And Management Of Advanced Batteries Via Additive Manufacturing And Modeling, Jie Li Jan 2018

Development And Management Of Advanced Batteries Via Additive Manufacturing And Modeling, Jie Li

Doctoral Dissertations

"The applications of Li-ion batteries require higher energy and power densities, improved safety, and sophisticated battery management systems. To satisfy these demands, as battery performances depend on the network of constituent materials, it is necessary to optimize the electrode structure. Simultaneously, the states of the battery have to be accurately estimated and controlled to maintain a durable condition of the battery system. For those purposes, this research focused on the innovation of 3D electrode via additive manufacturing, and the development of fast and accurate physical based models to predict the battery status for control purposes. Paper I proposed a novel ...


Laser Foil Printing And Surface Polishing Processes, Chen Chen Jan 2018

Laser Foil Printing And Surface Polishing Processes, Chen Chen

Doctoral Dissertations

"A foil-based additive manufacturing technology for fabricating metal parts, called Laser Foil Printing (LFP), was proposed and developed in this dissertation. The manufacturing sub-processes comprising the LFP technology were comprehensively studied, which include the laser spot welding of foil, laser raster-scan welding of foil, laser cutting of foil, and laser polishing processes. The fabricated free-form parts were demonstrated and own better mechanical properties (micro hardness and tensile strength) than the raw material, because of the rapid-cooling process of laser welding. The full and strong bond between layers was formed by the laser welding process, with no micro-cracks or pores observed ...


Fabrication And Characterization Of Advanced Materials Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen Jan 2018

Fabrication And Characterization Of Advanced Materials Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen

Doctoral Dissertations

"Over the past decades of years, a great deal of money has been spent to machine large and complex parts from high-performance metals (i.e., titanium components for aerospace applications), so users attempt to circumvent the high cost of materials. Laser metal deposition (LMD) is an additive manufacturing technique capable of fabricating complicated structures with superior properties. This dissertation aims to improve the applications of LMD technique for manufacturing metallic components by using various elemental powder mixture according to the following three categories of research topics. The first research topic is to investigate and develop a cost-effective possibility by using ...


Research On Additive Manufacturing Of Metallic Glass Alloy, Yiyu Shen Jan 2018

Research On Additive Manufacturing Of Metallic Glass Alloy, Yiyu Shen

Doctoral Dissertations

"The required rapid cooling has limited the dimension of the Bulk Metallic glasses (BMGs) produced by traditional method, and hence has seriously limited their applications, despite their remarkable mechanical properties. In this present project, a detailed study is conducted on the methodology and understanding of manufacturing large Zr- based metallic glass part by laser based additive manufacturing technology, which breaks the size limitation. The first research issue proposes and develops a new additive manufacturing technology, named Laser-Foil-Printing (LFP). Sheet foils of LM105 (Zr52.5Ti5Al10Ni14.6Cu17.9 (at. %)) metallic glass are used ...


Investigation Of Microstructure And Mechanical Properties By Direct Metal Deposition, Jingwei Zhang Jan 2018

Investigation Of Microstructure And Mechanical Properties By Direct Metal Deposition, Jingwei Zhang

Doctoral Dissertations

"Microstructure and properties of Direct Metal Deposition (DMD) parts are very crucial to meeting industrial requirements of parts quality. Prediction, and control of microstructure and mechanical properties have attracted much attention during conventional metal manufacturing process under different conditions. However, there is few investigations focused on microstructure simulation and mechanical properties control under different process parameters during DMD process. This dissertation is intended to develop a multiscale model to investigate Ti6Al4V grain structure development and explore Ti6Al4V based functionally graded material (FGM) deposit properties during DMD process. The first research topic is to investigate and develop a cellular automaton-finite element ...


Additive Manufacturing Of Glass Using A Filament Fed Process, Junjie Luo Jan 2017

Additive Manufacturing Of Glass Using A Filament Fed Process, Junjie Luo

Doctoral Dissertations

"There are many scientific and engineering applications of glass including optics, communications, electronics, and hermetic seals, there has been minimal research towards the Additive Manufacturing (AM) of transparent glass parts. The special thermal and optical properties of glasses make them hard to be printed using conventional AM techniques. In this dissertation, two different AM techniques for glass AM were developed, Selective Laser Melting (SLM) and filament fed process.

Semi-transparent parts were printed with SLM process. However, the filament fed process was found to be more robust and promising for printing optically transparent glass parts. Therefore, this dissertation is focused on ...


Effect Of Build Parameters On Mechanical Properties Of Ultem 9085 Parts By Fused Deposition Modeling, Krishna Prasanth Motaparti Jan 2016

Effect Of Build Parameters On Mechanical Properties Of Ultem 9085 Parts By Fused Deposition Modeling, Krishna Prasanth Motaparti

Masters Theses

"Additive manufacturing is a fabrication technique that is used to build components by depositing material in a layer-by-layer manner. Fused Deposition Modeling (FDM) is one of the additive manufacturing techniques which is widely used for prototyping and production applications of thermoplastic components. In load bearing applications, the flexural and compression forces often coexist. In order to avoid failure under these loads, it is essential to study the mechanical properties of the components fabricated by FDM. The main focus of this research is to study the mechanical properties of the fabricated components and to comprehend their dependence on various build parameters ...


Freeze-Form Extrusion Fabrication Of Boron Carbide, Aaron Scott Thornton Jan 2015

Freeze-Form Extrusion Fabrication Of Boron Carbide, Aaron Scott Thornton

Masters Theses

"Boron carbide is a safe, alternative to beryllium as a material for aerospace structures since it is also light-weight and exhibits high strength. This paper discusses a study of the Freeze-form Extrusion Fabrication (FEF) process to fabricate parts from boron carbide. Process parameters and hardware were modified to fabricate boron carbide specimens free of printed defects. Four-point bending tests were performed to measure the flexural strength of fabricated specimens. Observations of the presence of voids caused by ice crystals in fabricated parts led to further development and characterization of the boron carbide paste used with the FEF process. Additives were ...


Performance Metrics For Powder Feeder Systems In Additive Manufacturing, Venkata Sivaram Bitragunta Jan 2015

Performance Metrics For Powder Feeder Systems In Additive Manufacturing, Venkata Sivaram Bitragunta

Masters Theses

"In blown powder Direct Metal Deposition (DMD) process, parts are built by adding metal powder on the melt pool created by the laser system. At low feed rates powder feeder systems have perturbations. The study focused on relationship between the perturbation frequencies by inherent powder feeder designs and its impact on deposition quality. Performance metric determine the relation between perturbations in the powder flow and quality of the deposit. To determine performance metric, various powder feeder designs were analyzed. Perturbation frequencies were introduced to the disk feeder design. The quality of the deposit was determined by the surface roughness of ...


Additive Manufacturing Laser Deposition Of Ti-6al-4v For Aerospace Repair Application, Nanda Kumar Dey Jan 2014

Additive Manufacturing Laser Deposition Of Ti-6al-4v For Aerospace Repair Application, Nanda Kumar Dey

Masters Theses

"Parts or products machined from high performance metals are very expensive, partly due to the processing complexities during manufacturing. Therefore, many high performance metal parts users, such as the aerospace industry, mold/die casting industry, heavy machinery consumers etc., extend the service of these damaged parts by employing repair or remanufacturing technology. The research objective is to use laser deposition and machining processes to repair titanium parts.

This thesis discusses a new way of approach for developing a repair process for Ti-6Al-4V for the aerospace industry using Laser Metal Deposition (LMD). The repairs were conducted in a multi-axis hybrid manufacturing ...


Numerical Analysis Of Thermal Stress And Deformation In Multi-Layer Laser Metal Deposition Process, Heng Liu Jan 2014

Numerical Analysis Of Thermal Stress And Deformation In Multi-Layer Laser Metal Deposition Process, Heng Liu

Masters Theses

"Direct metal deposition (DMD) has gained increasing attention in the area of rapid manufacturing and repair. It has demonstrated the ability to produce fully dense metal parts with complex internal structures that could not be achieved by traditional manufacturing methods. However, this process involves extremely high thermal gradients and heating and cooling rates, resulting in residual stresses and distortion, which may greatly affect the product integrity. The purpose of this thesis is to study the features of thermal stress and deformation involved in the DMD process. Utilizing commercial finite element analysis (FEA) software ABAQUS, a 3-D, sequentially coupled, thermo-mechanical model ...


Characterization Of 304l Stainless Steel By Means Of Minimum Input Energy On The Selective Laser Melting Platform, Ben Brown Jan 2014

Characterization Of 304l Stainless Steel By Means Of Minimum Input Energy On The Selective Laser Melting Platform, Ben Brown

Masters Theses

"Developing parameter sets for new materials on the Selective Laser Melting (SLM) platform has traditionally been done through the use of single line processing windows and a basic design of experiments (DOE) which would include varying machine parameters to maximize density. This study expands the traditional method by determining the main effects statistically for density, allowing for a more in depth analysis wherein the experimental results are statistically correlated to the variable machine parameters used. With this analysis, parameter optimization with respect to achieving near full density, while also considering build rates, can be performed. New parameters for 304L stainless ...


Parameter Optimization For Controlling Aluminum Loss When Laser Depositing Ti-6al-4v, Richard Charles Barclay Jan 2013

Parameter Optimization For Controlling Aluminum Loss When Laser Depositing Ti-6al-4v, Richard Charles Barclay

Masters Theses

"The ability to predict the mechanical properties of engineering materials is crucial to the manufacturing of advanced products. In the aerospace industry, Ti-6Al-4V is commonly used to build structures. Any deviation from the alloy's standard properties can prove detrimental. Thus, the compositional integrity of the material must be controlled. The ability to directly build and repair large, complicated structures directly from CAD files is highly sought after. Laser Metal Deposition (LMD) technology has the potential to deliver that ability. Before this process can gain widespread acceptance, however, a set of process parameters must be established that yield finished parts ...