Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Mechanical Engineering

2013

Keyword
Publication
Publication Type

Articles 1 - 26 of 26

Full-Text Articles in Engineering

Numerical Modeling Of Infrared Thermography Techniques Via Ansys, Hayder Abdulnabi Thajeel Dec 2013

Numerical Modeling Of Infrared Thermography Techniques Via Ansys, Hayder Abdulnabi Thajeel

Masters Theses

"Several inspection techniques have been developed over years. Recently, infrared thermography (IRT) technology has become a widely accepted as a nondestructive inspection (NDI) technique for different fields and various applications as well. Infrared thermography stands as one of the most an attractive and a successful NDI technique that has ability to detect the object's surface/subsurface defects remotely based on observing and measuring the surface's emitted infrared heat radiation by using an infrared camera. The finite element modeling FEM ANSYS was successfully used for the modelling of several IRT techniques; such as Pulsed Thermography (PT) and Lock-in Thermography ...


Development Of An Experimental Testbed For Research In Lithium-Ion Battery Management Systems, Nima Lotfi, Poria Fajri, Samuel Novosad, Jack Savage, Robert G. Landers, Mehdi Ferdowsi Oct 2013

Development Of An Experimental Testbed For Research In Lithium-Ion Battery Management Systems, Nima Lotfi, Poria Fajri, Samuel Novosad, Jack Savage, Robert G. Landers, Mehdi Ferdowsi

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Advanced electrochemical batteries are becoming an integral part of a wide range of applications from household and commercial to smart grid, transportation, and aerospace applications. Among different battery technologies, lithium-ion (Li-ion) batteries are growing more and more popular due to their high energy density, high galvanic potential, low self-discharge, low weight, and the fact that they have almost no memory effect. However, one of the main obstacles facing the widespread commercialization of Li-ion batteries is the design of reliable battery management systems (BMSs). An efficient BMS ensures electrical safety during operation, while increasing battery lifetime, capacity and thermal stability. Despite ...


Multi-Axis Planning Of A Hybrid Material Deposition And Removal Combined Process, J. Zhang, Frank W. Liou Sep 2013

Multi-Axis Planning Of A Hybrid Material Deposition And Removal Combined Process, J. Zhang, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

No abstract provided.


Study Of A Molten Carbonate Fuel Cell Combined Heat, Hydrogen And Power System: End-Use Application, Tarek A. Hamad, Abdulhakim Amer A. Agll, Yousif M. Hamad, Sushrut Bapat, Mathew Thomas, Kevin B. Martin, John W. Sheffield Sep 2013

Study Of A Molten Carbonate Fuel Cell Combined Heat, Hydrogen And Power System: End-Use Application, Tarek A. Hamad, Abdulhakim Amer A. Agll, Yousif M. Hamad, Sushrut Bapat, Mathew Thomas, Kevin B. Martin, John W. Sheffield

Engineering Management and Systems Engineering Faculty Research & Creative Works

To address the problem of fossil fuel usage and high greenhouse gas emissions at the Missouri University of Science and Technology campus, using of alternative fuels and renewable energy sources can lower energy consumption and greenhouse gas emissions. Biogas, produced by anaerobic digestion of wastewater, organic waste, agricultural waste, industrial waste, and animal by-products is a potential source of renewable energy. In this work, we have discussed the design of CHHP system for the campus using local resources. An energy flow and resource availability study is performed to identify the type and source of feedstock required to continuously run the ...


Computational Modeling And Experimental Study On Optical Microresonators Using Optimal Spherical Structure For Chemical Sensing, Hanzheng Wang, Lei Yuan, Jie Huang, Xinwei Lan, Cheol-Woon Kim, Lan Jiang, Hai Xiao Sep 2013

Computational Modeling And Experimental Study On Optical Microresonators Using Optimal Spherical Structure For Chemical Sensing, Hanzheng Wang, Lei Yuan, Jie Huang, Xinwei Lan, Cheol-Woon Kim, Lan Jiang, Hai Xiao

Electrical and Computer Engineering Faculty Research & Creative Works

Chemical sensors based on optical microresonators have been demonstrated highly sensitive by monitoring the refractive index (RI) changes in the surrounding area near the resonator surface. In an optical resonator, the Whispering Gallery Modes (WGMs) with high quality (Q) factor supported by the spherical symmetric structure interacts with the contiguous background through evanescent field. Highly sensitive detection can be realized because of the long lifetime of the photons. The computational models of solid glass microspheres and hollow glass spheres with porous wall (PW-HGM) were established. These two types of microresonators were studied through simulations. The PWHGM resonator was proved as ...


Hybrid System For Enhancing Algal Growth Using Vertical Membranes, David J. Bayless, Ben J. Stuart Jul 2013

Hybrid System For Enhancing Algal Growth Using Vertical Membranes, David J. Bayless, Ben J. Stuart

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A method for enhancing gas-to-liquid transfer rate and algal growth using vertical membranes suspended over a pond, wherein the membranes are formed of fibers. An aqueous solution is applied to the top edges of the membranes through a series of headers. The membranes are exposed to a stream of gas containing soluble gas species as the aqueous solution migrates downwardly through the membranes by virtue of gravity-assisted capillary action. The aqueous solution collects the soluble gases from the gas stream, thus promoting the growth of photosynthetic organisms on the membranes and in the pond. The membranes facilitate a gradual introduction ...


Near- And Far-Field Spectroscopic Imaging Investigation Of Resonant Square-Loop Infrared Metasurfaces, J. D'Achangel, E. Tucker, Edward C. Kinzel, E. A. Muller, H. A. Bechtel, M. B. Martin, G. Boreman Jul 2013

Near- And Far-Field Spectroscopic Imaging Investigation Of Resonant Square-Loop Infrared Metasurfaces, J. D'Achangel, E. Tucker, Edward C. Kinzel, E. A. Muller, H. A. Bechtel, M. B. Martin, G. Boreman

Mechanical and Aerospace Engineering Faculty Research & Creative Works

No abstract provided.


Apparatus And Method For Growing Biological Organisms For Fuel And Other Purposes, David J. Bayless, Morgan Lefay Vis-Chiasson, Ben J. Stuart, Gregory G. Kremer Jun 2013

Apparatus And Method For Growing Biological Organisms For Fuel And Other Purposes, David J. Bayless, Morgan Lefay Vis-Chiasson, Ben J. Stuart, Gregory G. Kremer

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A bioreactor apparatus in which a container has sidewalls, a floor and a ceiling defining a chamber that contains a slurry of water, nutrients and photosynthetic microorganisms. A plurality of optical fibers, each of which has a first end disposed outside the chamber and a second end in the mixture. A light collector spaced from the container has light incident on it and focuses the light onto the first ends of the plurality of optical fibers, thereby permitting the light to be conveyed into the mixture to promote photosynthesis. At least one nozzle is in fluid communication with a source ...


Structural Health Monitoring Data Transmission For Composite Hydrokinetic Turbine Blades, A. Heckman, Joshua L. Rovey, K. Chandrashekhara, Steve Eugene Watkins, Daniel S. Stutts, Arindam Banerjee, Rajiv S. Mishra Jun 2013

Structural Health Monitoring Data Transmission For Composite Hydrokinetic Turbine Blades, A. Heckman, Joshua L. Rovey, K. Chandrashekhara, Steve Eugene Watkins, Daniel S. Stutts, Arindam Banerjee, Rajiv S. Mishra

Mechanical and Aerospace Engineering Faculty Research & Creative Works

No abstract provided.


Numerical Investigation Of Plasma Actuator Configurations For Flow Separation Control At Multiple Angles Of Attack, Thomas Kelsey Iv, West, Serhat Hosder Mar 2013

Numerical Investigation Of Plasma Actuator Configurations For Flow Separation Control At Multiple Angles Of Attack, Thomas Kelsey Iv, West, Serhat Hosder

Mechanical and Aerospace Engineering Faculty Research & Creative Works

No abstract provided.


Development Of A Methodology For Pseudo-Rigid-Body Models Of Compliant Segments With Inserts, And Experimental Validation, Raghvendra Sharadchandra Kuber Jan 2013

Development Of A Methodology For Pseudo-Rigid-Body Models Of Compliant Segments With Inserts, And Experimental Validation, Raghvendra Sharadchandra Kuber

Masters Theses

"Compliant mechanisms have shown a great deal of potential in the last few decades in providing better solutions to design problems with numerous benefits; however, their use has been limited due to current challenges in the material selection. With ever increasing focus on the applications of compliant mechanisms, it is necessary to find alternatives to the existing materials and methods of prototyping. The purpose of this work is to develop a methodology for pseudo-rigid-body models of compliant segments with compliant inserts, comprised of a resilient material placed between the layers of a softer material, to alleviate any creep and strength ...


A Friction Prediction Model For Small Si Engines, Avinash Singh Jan 2013

A Friction Prediction Model For Small Si Engines, Avinash Singh

Masters Theses

"A substantial portion of the input fuel energy in an SI engine is lost towards overcoming the frictional forces from various rubbing parts. These frictional losses are very significant in small engines and these losses can be reduced by incorporating some design changes. A semi-empirical friction prediction model was studied and modified with the help of the experimental results for small SI engines. This model is dependent upon engine geometry and speed. The model divides the frictional work into different sub-assemblies of the engine and these sub-assemblies are in turn divided to determine the friction associated with individual components. A ...


Paste Development And Co-Sintering Test Of Zirconium Carbide And Tungsten In Freeze-Form Extrusion Fabrication, Ang Li Jan 2013

Paste Development And Co-Sintering Test Of Zirconium Carbide And Tungsten In Freeze-Form Extrusion Fabrication, Ang Li

Masters Theses

"Ultra-high temperature ceramics are being investigated for future use in aerospace applications due to their superior thermo-mechanical properties, as well as oxidation resistance, at temperatures above 2000°C. However, their brittle properties make them susceptible to thermal shock failure. Components fabricated as functionally graded materials (FGMs) can combine the superior properties of ceramics with the toughness of an underlying refractory metal by fabricating graded composites. This paper discusses the grading of two materials through the use of a Freeze-form Extrusion Fabrication (FEF) system to build FGMs parts consisting of zirconium carbide (ZrC) and tungsten (W). Aqueous-based colloidal suspensions of ZrC ...


Transmission Shaft Design For Hydrokinetic Turbine With Reliability Consideration, Goutham Pusapati Jan 2013

Transmission Shaft Design For Hydrokinetic Turbine With Reliability Consideration, Goutham Pusapati

Masters Theses

"Hydrokinetic energy, a relatively new kind of renewable energy, can be generated from flowing water in rivers or oceans. Hydrokinetic turbines (HKTs) are a major system for hydrokinetic energy, and the reliability of the HKTs is critical for both their lifecycle cost and safety. The objective of this work is to apply advanced methodologies of reliability analysis and reliability-based design to the transmission shaft design for a horizontal-axis, non-submerged HKT. The deterministic shaft design is performed first by considering failure modes of strength and deflection using distortion energy, maximum shear and deflection theories. Then the reliability analysis of the shaft ...


Dynamic Contact Analysis Of A Piezoelectrically Driven Ultrasonic Crawler-Actuator, Dwight Santiago Maness Jan 2013

Dynamic Contact Analysis Of A Piezoelectrically Driven Ultrasonic Crawler-Actuator, Dwight Santiago Maness

Masters Theses

"A standing wave ultrasonic motor (SWUM) is presented in this thesis. The actuator is piezoelectrically powered and operates in the first and second bending modes to move forwards and backwards, respectively. The kinematic stability of the crawler, backed by experimental results is shown in the first paper presented in this thesis. This study demonstrates that in the absence of a preload or kinematic constraints, the crawler shows vertical stability. A full transient analysis using the finite element method is performed characterizing the speed and contact variables is conducted in the second paper. The results show that given enough time the ...


A New Method For Failure Modes And Effects Analysis And Its Application In A Hydrokinetic Turbine System, Liang Xie Jan 2013

A New Method For Failure Modes And Effects Analysis And Its Application In A Hydrokinetic Turbine System, Liang Xie

Masters Theses

"The traditional failure modes and effects analysis (FMEA) is a conceptual design methodology for dealing with potential failures. FMEA uses the risk priority number (RPN), which is the product of three ranked factors to prioritize risks of different failure modes. The three factors are occurrence, severity, and detection. However, the RPN may not be able to provide consistent evaluation of risks for the following reasons: the RPN has a high degree of subjectivity, it is difficult to compare different RPNs, and possible failures may be overlooked in the traditional FMEA method. The objective of this research is to develop a ...


A Generalized Approach For Compliant Mechanism Design Using The Synthesis With Compliance Method, With Experimental Validation, Ashish B. Koli Jan 2013

A Generalized Approach For Compliant Mechanism Design Using The Synthesis With Compliance Method, With Experimental Validation, Ashish B. Koli

Masters Theses

"Compliant mechanisms offer numerous advantages over their rigid-body counterparts. The synthesis with compliance technique synthesizes compliant mechanisms for conventional rigid-body synthesis tasks with energy/torque specifications at precision positions. In spite of its usefulness, the method suffers from some limitations/problems. The purpose of this work is to investigate these sensitivities with the synthesis with compliance technique and improve upon existing method. A new, simple but efficient, method for synthesis with compliance using an optimization approach is proposed, and its usefulness and simplicity demonstrated over the existing method. The strongly and weakly coupled system of kinematic and energy/torque equations ...


Processing Of Continuous Fiber Reinforced Ceramic Composites For Ultra High Temperature Applications Using Organosilicon Polymer Precursors, James Robert Nicholas Jan 2013

Processing Of Continuous Fiber Reinforced Ceramic Composites For Ultra High Temperature Applications Using Organosilicon Polymer Precursors, James Robert Nicholas

Masters Theses

"The current work is on the development of continuous fiber reinforced ceramic materials (CFCCs) for use in ultra high temperature applications. These applications subject materials to extremely high temperatures (> 2000⁰C). Monolithic ceramics are currently being used for these applications, but the tendency to fail catastrophically has driven the need for the next generation of material. Reinforcing with continuous fibers significantly improves the toughness of the monolithic materials; however, this is a manufacturing challenge. The development of commercial, low-viscosity preceramic polymers provides new opportunities to fabricate CFCCs. Preceramic polymers behave as polymers at low temperatures and are transformed into ceramics upon ...


Parameter Optimization For Controlling Aluminum Loss When Laser Depositing Ti-6al-4v, Richard Charles Barclay Jan 2013

Parameter Optimization For Controlling Aluminum Loss When Laser Depositing Ti-6al-4v, Richard Charles Barclay

Masters Theses

"The ability to predict the mechanical properties of engineering materials is crucial to the manufacturing of advanced products. In the aerospace industry, Ti-6Al-4V is commonly used to build structures. Any deviation from the alloy's standard properties can prove detrimental. Thus, the compositional integrity of the material must be controlled. The ability to directly build and repair large, complicated structures directly from CAD files is highly sought after. Laser Metal Deposition (LMD) technology has the potential to deliver that ability. Before this process can gain widespread acceptance, however, a set of process parameters must be established that yield finished parts ...


Water Management Capabilities Of Bio-Inspired Flow Field Configurations For Polymer Electrolyte Membrane Fuel Cells, Nicholas Warren Freer Jan 2013

Water Management Capabilities Of Bio-Inspired Flow Field Configurations For Polymer Electrolyte Membrane Fuel Cells, Nicholas Warren Freer

Masters Theses

"Fuel cells have received an increasing amount of attention over the past decade for their power production capabilities. Polymer electrolyte membrane (PEM) fuel cells in particular are researched because of their high power density, large range of operating conditions, green products, and ease of scalability. PEM fuel cells do have a number of issues that reduce their overall performance. These issues include variations in reactant distribution, materials issues for the bipolar plate, and flooding caused by poor water management. Variations in the reactant distribution causes lower overall power output due to regions of low reactant density. This means that optimizing ...


Bio-Inspired Design, Fabrication And Testing Of Bipolar Plates For Pem Fuel Cells, Nannan Guo Jan 2013

Bio-Inspired Design, Fabrication And Testing Of Bipolar Plates For Pem Fuel Cells, Nannan Guo

Doctoral Dissertations

"The flow field of a bipolar plate distributes reactants for polymer electrolyte membrane (PEM) fuel cells and removes the produced water from the fuel cells. It greatly influences the performance of fuel cells, especially the concentration losses. Two approaches were developed to improve flow field designs in this dissertation. One is inspired by the biological circulatory structures and called bio-inspired designs, which have great potential to transport reactant efficiently and hence improve fuel cell performance. Another way is using a network-based optimization model to optimize the conventional flow field configurations, i.e., pin-type, parallel and serpentine designs, to improve flow ...


Part Height Control Of Laser Metal Additive Manufacturing Process, Yu-Herng Pan Jan 2013

Part Height Control Of Laser Metal Additive Manufacturing Process, Yu-Herng Pan

Masters Theses

"Laser Metal Deposition (LMD) has been used to not only make but also repair damaged parts in a layer-by-layer fashion. Parts made in this manner may produce less waste than those made through conventional machining processes. However, a common issue of LMD involves controlling the deposition's layer thickness. Accuracy is important, and as it increases, both the time required to produce the part and the material wasted during the material removal process (e.g., milling, lathe) decrease. The deposition rate is affected by multiple parameters, such as the powder feed rate, laser input power, axis feed rate, material type ...


Development Of A Postprocessor For A Multi-Axis Cnc Milling Center, Mihir Satish Adivarekar Jan 2013

Development Of A Postprocessor For A Multi-Axis Cnc Milling Center, Mihir Satish Adivarekar

Masters Theses

"Most of the current college design and manufacturing curricula are primarily focused on computer aided design (CAD), while less emphasis is given to computer aided manufacturing (CAM). A great opportunity has been missed as the benefits of CAD/CAM cannot then be fully learned. Postprocessor plays a vital role in integration of CAD//CAM with computer numerically controlled (CNC) machines. Hence, postprocessor must be developed accurately. This thesis is composed of one paper. Paper I proposes a novel methodology to determine compensation vectors for the post processor of multi-axis milling center. The new approach that has been implemented in Paper ...


Manufacturing And Characterization Of Polyurethane Based Sandwich Composites, Stephen Robert Hawkins Jan 2013

Manufacturing And Characterization Of Polyurethane Based Sandwich Composites, Stephen Robert Hawkins

Masters Theses

"Composite sandwich structures have been extensively employed in aerospace structures, ship building, infrastructure, etc. due to their light weight and high strength to weight ratio. The understanding of their behavior under impact and environmental conditions is extremely important for the design and manufacturing of these engineering structures since these problems are directly related to structural integrity and safety requirements. Vacuum assisted resin transfer molding (VARTM) is one of the commonly used low cost composite manufacturing processes. Polyurethane (PU) resin system has been observed to have better mechanical properties and higher impact strength when compared to conventional resin systems such as ...


Numerical Modeling Of Heat Transfer And Fluid Flow In Laser Metal Deposition By Powder Injection, Zhiqiang Fan Jan 2013

Numerical Modeling Of Heat Transfer And Fluid Flow In Laser Metal Deposition By Powder Injection, Zhiqiang Fan

Doctoral Dissertations

"Laser metal deposition is an additive manufacturing technique which allows quick fabrication of fully-dense metallic components directly from Computer Aided Design (CAD) solid models. A self-consistent three-dimensional model was developed for the laser metal deposition process by powder injection, which simulates heat transfer, phase changes, and fluid flow in the melt pool, The governing equations for solid, liquid and gas phases in the calculation domain have been formulated using the continuum model. The free surface in the melt pool has been tracked by the Volume of Fluid (VOF) method, while the VOF transport equation was solved using the Piecewise Linear ...


Approximate Dynamic Programming Based Solutions For Fixed-Final-Time Optimal Control And Optimal Switching, Ali Heydari Jan 2013

Approximate Dynamic Programming Based Solutions For Fixed-Final-Time Optimal Control And Optimal Switching, Ali Heydari

Doctoral Dissertations

"Optimal solutions with neural networks (NN) based on an approximate dynamic programming (ADP) framework for new classes of engineering and non-engineering problems and associated difficulties and challenges are investigated in this dissertation. In the enclosed eight papers, the ADP framework is utilized for solving fixed-final-time problems (also called terminal control problems) and problems with switching nature. An ADP based algorithm is proposed in Paper 1 for solving fixed-final-time problems with soft terminal constraint, in which, a single neural network with a single set of weights is utilized. Paper 2 investigates fixed-final-time problems with hard terminal constraints. The optimality analysis of ...