Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Understanding Of Molecular Interactions And Reversibility In Silylamines, Josephine Chen Jan 2018

Understanding Of Molecular Interactions And Reversibility In Silylamines, Josephine Chen

Dissertations and Theses

Modern Li-ion batteries employ flammable electrolytes that pose safety concerns. Battery safety has become important as several incidents involving Li-ion battery fires have been observed. This issue could be addressed through a switchable battery electrolyte. Reversible ionic liquids (RevILs) could be used in such an electrolyte that would cease operation in the event of rapid temperature elevation because they can switch between states of drastically different properties upon the application of an external stimulus, such as temperature or CO2 addition. Silylamines, in particular, are a class of thermally responsive RevILs that are conducting in its ionic liquid (RevIL) state …


Property Analysis Of Silylamine Type Reversible Ionic Liquids For Use As A Thermal Safety Switch In Batteries, Showmik Podder Jan 2017

Property Analysis Of Silylamine Type Reversible Ionic Liquids For Use As A Thermal Safety Switch In Batteries, Showmik Podder

Dissertations and Theses

The increased capacity of the modern battery system has also brought about safety apprehensions. Uncontrollable runaway reactions are a big concern in these systems; these reactions are the result of in situ heat generation and very much increase the risk of explosions and device failures. The concept of this work is to provide a preliminary understanding into the use of a type of switchable solvent known as reversible ionic liquids (RevILs) and their feasibility in being used in electrolytes as a thermally-controlled reversible safety switch. In their pure forms these switchable solvents experience a dramatic change in their properties upon …


Life-Cycle Optimization And Flow Control In A Nickel-Zinc Flow Assisted Battery, Steve Lever Jan 2012

Life-Cycle Optimization And Flow Control In A Nickel-Zinc Flow Assisted Battery, Steve Lever

Dissertations and Theses

Nickel-Zinc flow-assisted rechargeable batteries are currently being explored as a potential new generation of large-scale, low-cost energy storage devices. The viability of a commercial nickel-zinc battery has been hindered by the well-known phenomena of dendrite formation and zinc morphology variation over time. Applying electrolyte flow to traditional nickel-zinc battery systems has demonstrated significant life cycle performance improvements by reducing both dendrite formation and morphological variation. It has also been demonstrated that periodic low-current reconditioning discharge further improves cycle life. This thesis examines the effect of eliminating electrolyte flow during discharge of nickel-zinc flow assisted batteries, which would allow a much …


Printed Complaint Electrochemical Systems, Abhinav Machhindra Gaikwad Jan 2012

Printed Complaint Electrochemical Systems, Abhinav Machhindra Gaikwad

Dissertations and Theses

No abstract provided.