Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Improve The Prototype Of Low-Cost Near-Infrared Diffuse Optical Imaging System, Chen Xu, Mohammed Z. Shakil Dec 2020

Improve The Prototype Of Low-Cost Near-Infrared Diffuse Optical Imaging System, Chen Xu, Mohammed Z. Shakil

Publications and Research

Diffuse Optical Tomography (DOT) and Optical Spectroscopy using near-infrared (NIR) diffused light has demonstrated great potential for the initial diagnosis of tumors and in the assessment of tumor vasculature response to neoadjuvant chemotherapy. The aims of this project are 1) to test the different types of LEDs in the near-infrared range, and design the driving circuit, and test the modulation of LEDs at different frequencies; 2) to test the APDs as a detector, and build the receiver system and compare efficiency with pre-built systems. In this project, we are focusing on creating a low-cost infrared transmission system for tumor and ...


The Effect Of Heterobifunctional Crosslinkers On Hema Hydrogel Modulus And Toughness, Elizabeth M. Boazak, Vaughn K. Greene Jr., Debra T. Auguste May 2019

The Effect Of Heterobifunctional Crosslinkers On Hema Hydrogel Modulus And Toughness, Elizabeth M. Boazak, Vaughn K. Greene Jr., Debra T. Auguste

Publications and Research

The use of hydrogels in load bearing applications is often limited by insufficient toughness. 2-Hydroxyethyl methacrylate (HEMA) based hydrogels are appealing for translational work, as they are affordable and the use of HEMA is FDA approved. Furthermore, HEMA is photopolymerizable, providing spatiotemporal control over mechanical properties. We evaluated the ability of vinyl methacrylate (VM), allyl methacrylate (AM), and 3-(Acryloyloxy)-2-hydroxypropyl methacrylate (AHPM) to tune hydrogel toughness and Young’s modulus. The crosslinkers were selected due to their heterobifunctionality (vinyl and methacrylate) and similar size and structure to EGDMA, which was shown previously to increase toughness as compared to longer ...


Monitoring The Progression Of Spontaneous Articular Cartilage Healing With Infrared Spectroscopy, Megan P. O'Brien, Madhuri Penmatsa, Uday Palukuru, Paul West, Xu Yang, Mathias P. G. Bostrom, Theresa Freeman, Nancy Pleshko Jul 2015

Monitoring The Progression Of Spontaneous Articular Cartilage Healing With Infrared Spectroscopy, Megan P. O'Brien, Madhuri Penmatsa, Uday Palukuru, Paul West, Xu Yang, Mathias P. G. Bostrom, Theresa Freeman, Nancy Pleshko

Publications and Research

Objective. Evaluation of early compositional changes in healing articular cartilage is critical for understanding tissue repair and for therapeutic decision-making. Fourier transform infrared imaging spectroscopy (FT-IRIS) can be used to assess the molecular composition of harvested repair tissue. Furthermore, use of an infrared fiber-optic probe (IFOP) has the potential for translation to a clinical setting to provide molecular information in situ. In the current study, we determined the feasibility of IFOP assessment of cartilage repair tissue in a rabbit model, and assessed correlations with gold-standard histology.

Design. Bilateral osteochondral defects were generated in mature white New Zealand rabbits, and IFOP ...


Utilizing Fast Spin Echo Mri To Reduce Image Artifacts And Improve Implant/Tissue Interface Detection In Refractory Parkinson’S Patients With Deep Brain Stimulators, Subhendra N. Sarkar, Pooja R. Sarkar, Efstathios Papavassiliou, Rafael Rojas Feb 2014

Utilizing Fast Spin Echo Mri To Reduce Image Artifacts And Improve Implant/Tissue Interface Detection In Refractory Parkinson’S Patients With Deep Brain Stimulators, Subhendra N. Sarkar, Pooja R. Sarkar, Efstathios Papavassiliou, Rafael Rojas

Publications and Research

Introduction. In medically refractory Parkinson’s disease (PD) deep-brain stimulation (DBS) is an effective therapeutic tool. Postimplantation MRI is important in assessing tissue damage and DBS lead placement accuracy. We wanted to identify which MRI sequence can detectDBS leads with smallest artifactual signal void, allowing better tissue/electrode edge conspicuity.

Methods. Using an IRB approved protocol 8 advanced PDpatientswere imagedwithinMRconditional safety guidelines at lowRF power (SAR ≤ 0.1 W/kg) in coronal plane at 1.5T by various sequences.The image slices were subjectively evaluated for diagnostic quality and the lead contact diameters were compared to identify a sequence least ...