Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Engineering

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss Sep 2019

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss

Dissertations, Theses, and Capstone Projects

All forms of life are based on biopolymers, which are made up of a selection of simple building blocks, such as amino acids, nucleotides, fatty acids and sugars. Their individual properties govern their interactions, giving rise to complex supramolecular structures with highly specialized functionality, including ligand recognition, catalysis and compartmentalization. In this thesis, we aim to answer the question whether short peptides could have acted as precursors of modern proteins during prebiotic evolution. Using a combination of experimental and computational techniques, we screened a large molecular search space for peptide sequences that are capable of forming supramolecular complexes with adenosine ...


Synthesis And Characterization Of Dielectric And Multiferroic Nanocrystalline Transition Metal Oxide Materials And Nanocomposites, Frederick A. Pearsall May 2019

Synthesis And Characterization Of Dielectric And Multiferroic Nanocrystalline Transition Metal Oxide Materials And Nanocomposites, Frederick A. Pearsall

Dissertations, Theses, and Capstone Projects

Nanocrystalline transition metal oxides with unique chemical, physical, magnetic and dielectric properties have very broad applications, ranging from photocatalysis, capacitor energy storage and 4-state memory. Frequency stable, high permittivity nanocomposite capacitors produced under mild processing conditions offer an attractive replacement to MLCCs derived from conventional ceramic firing. In one project reported herein, 0-3 nanocomposites were prepared using BaTiO3 (barium titanate, BTO) nanocrystals, suspended in a poly(furfuryl alcohol) matrix, resulting in a stable, high effective permittivity, low and stable loss dielectric. Effective medium approximations were used to compare this with similar nanocomposite systems. The use of synthesized BTO nanocrystal ...


Ligand Selectivity In The Recognition Of Protoberberine Alkaloids By Hybrid-2 Human Telomeric G-Quadruplex: Binding Free Energy Calculation, Fluorescence Binding, And Nmr Experiments, Nanjie Deng, Junchao Xia, Lauren Wickstrom, Clement Lin, Kaibo Wang, Peng He, Yunting Yin, Danzhou Yang Apr 2019

Ligand Selectivity In The Recognition Of Protoberberine Alkaloids By Hybrid-2 Human Telomeric G-Quadruplex: Binding Free Energy Calculation, Fluorescence Binding, And Nmr Experiments, Nanjie Deng, Junchao Xia, Lauren Wickstrom, Clement Lin, Kaibo Wang, Peng He, Yunting Yin, Danzhou Yang

Publications and Research

The human telomeric G-quadruplex (G4) is an attractive target for developing anticancer drugs. Natural products protoberberine alkaloids are known to bind human telomeric G4 and inhibit telomerase. Among several structurally similar protoberberine alkaloids, epiberberine (EPI) shows the greatest specificity in recognizing the human telomeric G4 over duplex DNA and other G4s. Recently, NMR study revealed that EPI recognizes specifically the hybrid-2 form human telomeric G4 by inducing large rearrangements in the 50-flanking segment and loop regions to form a highly extensive four-layered binding pocket. Using the NMR structure of the EPI-human telomeric G4 complex, here we perform molecular dynamics free ...


Nanoporous Carbon-Based Co2 Reduction Catalysts: Exploring The Combined Effects Of Surface Chemistry And Porosity, Wanlu Li Feb 2018

Nanoporous Carbon-Based Co2 Reduction Catalysts: Exploring The Combined Effects Of Surface Chemistry And Porosity, Wanlu Li

Dissertations, Theses, and Capstone Projects

For the first-time sulfur-doped, nitrogen-doped and sulfur, nitrogen-codoped nanoporous carbons were systematically studied as catalysts for CO2 electrochemical reduction reaction (CO2ERR). The Faradaic efficiencies (FE) of CO and CH4 formation were calculated to evaluate the performance of these carbons. The best catalysts showed the FE of CO and CH4 formation of 29% and 0.76%, respectively. It was found that the overall performance in CO2ERR dramatically increased upon the reduction pretreatment of the carbons in N2-saturated electrolyte before the CO2 reduction process. The pretreated carbon showed the maximum FE of ...


Chelator-Free Radiolabeling Of Serrs Nanoparticles For Whole-Body Pet And Intraoperative Raman Imaging, Matthew A. Wall, Travis Shaffer, Stefan Harmsen, Darjus-Felix Tschaharganeh, Chun-Hao Huang, Scott W. Lowe, Charles Michael Drain, Moritz F. Kircher Jul 2017

Chelator-Free Radiolabeling Of Serrs Nanoparticles For Whole-Body Pet And Intraoperative Raman Imaging, Matthew A. Wall, Travis Shaffer, Stefan Harmsen, Darjus-Felix Tschaharganeh, Chun-Hao Huang, Scott W. Lowe, Charles Michael Drain, Moritz F. Kircher

Publications and Research

A single contrast agent that offers whole-body non-invasive imaging along with the superior sensitivity and spatial resolution of surface-enhanced resonance Raman scattering (SERRS) imaging would allow both pre-operative mapping and intraoperative imaging and thus be highly desirable. We hypothesized that labeling our recently reported ultrabright SERRS nanoparticles with a suitable radiotracer would enable pre-operative identification of regions of interest with whole body imaging that can be rapidly corroborated with a Raman imaging device or handheld Raman scanner in order to provide high precision guidance during surgical procedures. Here we present a straightforward new method that produces radiolabeled SERRS nanoparticles for ...


Water Condensation And Protein Adsorption On Hybrid Superhydrophobic-Hydrophilic Surfaces, Bikash Mondal Feb 2016

Water Condensation And Protein Adsorption On Hybrid Superhydrophobic-Hydrophilic Surfaces, Bikash Mondal

Dissertations, Theses, and Capstone Projects

This thesis describes the study of protein adsorption and water condensation on hybrid superhydrophobic-hydrophilic surfaces for various technological applications such as diagnostics, artificial organs and medical devices, water collection, and heat transfer.

In the chapter 1, a general introduction to wetting theories, superhydrophobic surface, and hybrid surfaces is given. In chapter 2, design and fabrication of a hybrid superhydrophobic surface for studying dropwise condensation and heat transfer is discussed. Effect of surface chemistry and wettability on protein adsorption is discussed in the chapter 3. Finally, in chapter 4, the protein adsorption study on hybrid superhydrophobic surfaces made by 3D-printing and ...


Synthesis And Characterization Of A Novel Polyacetal & Design And Preparation Of Superhydrophobic Photocatalytic Surfaces, Yuanyuan Zhao Feb 2015

Synthesis And Characterization Of A Novel Polyacetal & Design And Preparation Of Superhydrophobic Photocatalytic Surfaces, Yuanyuan Zhao

Dissertations, Theses, and Capstone Projects

Polyacetal polymers are thermoplastic resins that play an important role in industry because of numerous industrial applications including automobile; household appliance; etc. The first part of this thesis (Chapter 2) is about the synthesis of a new acetal copolymer that exhibits superior thermal stability. The second part of this thesis (Chapter 3) is about the preparation and applications of TiO2-based polymer nanocomposite films, where the reactive oxygen species (ROS) are generated on the solid surface. Catalytic nanocomposite films are an active area of research because of their potential uses for environmental remediation and chemical synthesis. Furthermore, to enhance ...


Label-Free Detection Of Cancer Cells With Polysilicon Sensor Chips And Biomolecule-Assisted Synthesis Of Shape-Controlled Nanoparticles, Menglu Shi Feb 2015

Label-Free Detection Of Cancer Cells With Polysilicon Sensor Chips And Biomolecule-Assisted Synthesis Of Shape-Controlled Nanoparticles, Menglu Shi

Dissertations, Theses, and Capstone Projects

Constant effort has been made for the detection of cancer cells. Recently, ovarian and kidney cancer cell lines have been shown to have higher cellular elasticity as compared to normal cells assessed by monitoring the degree of deformation under hyposmotic pressure. This method has been modified and applied to various cases. In cancer cells, the oncogenic mutant p53 (mtp53) protein is present at high levels and contributes to tumor growth and metastasis. Herein the influence of mtp53 on the mechanical property of breast cancer cells was assessed by monitoring the swelling ratio of cells with time using the impedance measurements ...


Biomolecule Mediating Synthesis Of Inorganic Nanoparticles And Their Applications, Zengyan Wei Feb 2015

Biomolecule Mediating Synthesis Of Inorganic Nanoparticles And Their Applications, Zengyan Wei

Dissertations, Theses, and Capstone Projects

Project 1.

The conventional phage display technique focuses on screening peptide sequences that can bind on target substrates, however the selected peptides are not necessary to nucleate and mediate the growth of the target inorganic crystals, and in many cases they only show moderate affinity to the targets. Here we report a novel phage display approach that can directly screen peptides catalytically growing inorganic nanoparticles in aqueous solution at room temperature. In this study, the phage library is incubated with zinc precursor at room temperature. Among random peptide sequences displayed on phages, those phages that can grow zinc oxide (ZnO ...


Highly-Selective Chemiresistive Sensing And Analysis Of Vapors Using Functionalized Nanotubes, Deon Hines Feb 2015

Highly-Selective Chemiresistive Sensing And Analysis Of Vapors Using Functionalized Nanotubes, Deon Hines

Dissertations, Theses, and Capstone Projects

Specifically, the project involves the development of a diversified array of nanostructured gas-sensors comprised of selectively, novel surface-functionalized carbon nanotubes (for analyte selectivity by virtue of functionality). Harnessing carbon nanotubes with various electron withdrawing and donating groups help in determining their affinity toward certain prognostic gaseous markers thus increasing specificity of such created sensors. We have devised synthetic routes that have led to the facile production of covalently polyfunctionalized nanotubes in high yield. Seven carbon nanotube analogues were systematically considered and then chemically synthesized, from pristine single-walled nanotubes (SWNT's), for use as the main component of sensory units that ...


Synthesis And Evaluation Of Sensitizer Drug Photorelease Chemistry: Micro-Optic Method Applied To Singlet Oxygen Generation And Drug Delivery, Goutam Ghosh Oct 2014

Synthesis And Evaluation Of Sensitizer Drug Photorelease Chemistry: Micro-Optic Method Applied To Singlet Oxygen Generation And Drug Delivery, Goutam Ghosh

Dissertations, Theses, and Capstone Projects

This thesis summarizes a new micro-optic method for singlet oxygen generation and sensitizer drug delivery, which include i) synthesis and evaluation of a first generation device for drug delivery from native and fluorinated silica probe tips, ii) synthesis of PEG conjugated sensitizers to study phototoxicity in ovarian cancer cells, and iii) synthesis and evaluation of tris-PEGylated chlorin conjugated fluorinated silica for its future integration into the device to use as a 2nd generation device. A first generation micro-optic device was developed that works by sparging O2 gas and light generating cytotoxic singlet oxygen that cleaves the covalently attached drug (sensitizer ...


Synthesis, Fabrication And Characterization Of Magnetic And Dielectric Nanoparticles And Nanocomposite Films, Xiaohua Liu Oct 2014

Synthesis, Fabrication And Characterization Of Magnetic And Dielectric Nanoparticles And Nanocomposite Films, Xiaohua Liu

Dissertations, Theses, and Capstone Projects

Materials science is an interdisciplinary field investigating the structure-property relationship in solid-state materials scientifically and technologically. Nanoscience is concerned with the distinctive properties that matter exhibits when confined to physical dimensions on the order of 10-9 meters. At these length scales, behaviors of particles or elaborate structures are often governed by the rules of quantum mechanics in addition to the physical properties associated with the bulk material.

The work reported here seeks to employ nanocystals, binary nanocomposites and thin films of materials, to build versatile, functional systems and devices. With a focus on dielectric, ferroelectric, and magnetoelectric performance, a ...


Metal Nanoparticles Immobilized On Basic Supports As Catalysts For Hydrogenation And Dehydrogenation Reactions Of Relevance To Cleaner Fossil Fuels And Alternative Sources Of Energy, Reena Rahi Jun 2014

Metal Nanoparticles Immobilized On Basic Supports As Catalysts For Hydrogenation And Dehydrogenation Reactions Of Relevance To Cleaner Fossil Fuels And Alternative Sources Of Energy, Reena Rahi

Dissertations, Theses, and Capstone Projects

We developed a series of catalysts, composed of metal nanoparticles immobilized on basic supports for the hydrogenation of heteroaromatics of relevance to cleaner fossil fuels and biodiesel, and for the dehydrogenation of heteroaromatics of relevance to hydrogen storage in organic liquids. Our catalyst design involves nanostructured catalysts composed of metal particles immobilized on basic supports capable of ionic mechanism that may avoid catalyst poisoning and enhance catalytic activity.

We prepared a new catalyst composed of Pd nanoparticles immobilized on MgO by NaBH4 reduction of Na2PdCl4 in methanol in the presence of the support. TEM measurements revealed well-dispersed 1.7 nm ...


Property Enhancements Of Dielectric Nanoparticles Via Surface Functionalization, Andrew Byro Feb 2014

Property Enhancements Of Dielectric Nanoparticles Via Surface Functionalization, Andrew Byro

Dissertations, Theses, and Capstone Projects

This thesis describes the surface modification of barium strontium titanate nanoparticles for use in polymer/ceramic composite thin film capacitors with resultant improved dielectric and film-making properties. Phosphonic acid-type ligands proved to be most effective for surface conjugation to the surface of the barium strontium titanate nanoparticles. Amine-terminated ligands proved to be effective at removing surface adsorbed water before being almost entirely removed during the sample washing stage. Carboxylic acid terminated ligands proved to adhere less well to the nanoparticle than the phosphonic acid, but resulted in thin films with a higher dielectric constant, which was more stable in the ...


Fabrication And Assembly Of Patchy Particles With Uniform Patches, Zhenping He Feb 2014

Fabrication And Assembly Of Patchy Particles With Uniform Patches, Zhenping He

Dissertations, Theses, and Capstone Projects

Patchy colloidal particles have been widely studied as the self-assembly building blocks to illustrate their potential for forming complex structures. The parameters affecting the final assembly structures include (i) patch size, shape, and number per particle, (ii) their relative positions, and (iii) the surface properties of the patch material. Recent computational studies have highlighted the impact of patch shape on assembly structure; however, there are only a limited number of methods that can provide control over patch shape and size. In this thesis, a template is introduced to the Glancing Angle Vapor Deposition method (GLAD) to create surface anisotropy on ...


Organic Pi-Stacking Semiconducting Material: Design, Synthesis And The Analysis Of Structure And Properties, Bin Wang Feb 2014

Organic Pi-Stacking Semiconducting Material: Design, Synthesis And The Analysis Of Structure And Properties, Bin Wang

Dissertations, Theses, and Capstone Projects

Organic semiconducting materials have been under intensive investigation in the recent decades for potential applications in various electronic or optoelectronic devices such as light emitting diodes, photovoltaic cells and field effect transistors. Compared to inorganic counterparts, organic charge transport materials are attractive for their abilities of forming thin-films, large area manufacturing, compatibility with flexible substrate, light weight and potential low fabrication cost. The charge transport property of the organic active layer is one of the key factors to the electronic or optoelectronic performance of devices. Research projects presented in this thesis focused on improving charge carrier mobility of organic charge ...


Fabrication Of Size-Tunable Metallic Nanoparticles Using Plasmid Dna As A Biomolecular Reactor, Jacopo Samson, Irene Piscopo, Alex Yampolski, Patrick Nahirney, Andrea Parpas, Amit Aggarwal, Raihan Saleh, Charles Michael Drain Oct 2011

Fabrication Of Size-Tunable Metallic Nanoparticles Using Plasmid Dna As A Biomolecular Reactor, Jacopo Samson, Irene Piscopo, Alex Yampolski, Patrick Nahirney, Andrea Parpas, Amit Aggarwal, Raihan Saleh, Charles Michael Drain

Publications and Research

Plasmid DNA can be used as a template to yield gold, palladium, silver, and chromium nanoparticles of different sizes based on variations in incubation time at 70 °C with gold phosphine complexes, with the acetates of silver or palladium, or chromium acetylacetonate. The employment of mild synthetic conditions, minimal procedural steps, and aqueous solvents makes this method environmentally greener and ensures general feasibility. The use of plasmids exploits the capabilities of the biotechnology industry as a source of nanoreactor materials.


Novel Carbon-Carbon Bond Oxidative Cleavage Of Hexabenzyl-Hexaazaisowurtzitane By N-Buono And (Nh4)2ce(No3)6, Xiao-Pei Guan, Hong Yan, Jian-Guang Sun, Yong-Zhong Yu Mar 1999

Novel Carbon-Carbon Bond Oxidative Cleavage Of Hexabenzyl-Hexaazaisowurtzitane By N-Buono And (Nh4)2ce(No3)6, Xiao-Pei Guan, Hong Yan, Jian-Guang Sun, Yong-Zhong Yu

Publications and Research

Treatment of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo-[5.5.0.05,9.03,11]dodecane with n-butyl nitrite or ammonium cerium nitrate results in novel C(1)-C(7) oxidative cleavage to give 1,3,4,5,7,8-hexabenzyl-cis-cisoid-cis-hexahydro-1H,5H-diimidazolinium[4,5-b:4′,5′-e]pyrazine dinitrate.