Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

Bioelectrical and Neuroengineering

Neuromodulation

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Transcranial Direct Current Stimulation On Parkinson’S Disease: Systematic Review And Meta-Analysis, Paloma Cristina Alves De Oliveira, Thiago Anderson Brito De Araújo, Daniel Gomes Da Silva Machado, Abner Cardoso Rodrigues, Marom Bikson, Suellen Marinho Andrade, Alexandre Hideki Okano, Hougelle Simplicio, Rodrigo Pegado, Edgard Morya Jan 2022

Transcranial Direct Current Stimulation On Parkinson’S Disease: Systematic Review And Meta-Analysis, Paloma Cristina Alves De Oliveira, Thiago Anderson Brito De Araújo, Daniel Gomes Da Silva Machado, Abner Cardoso Rodrigues, Marom Bikson, Suellen Marinho Andrade, Alexandre Hideki Okano, Hougelle Simplicio, Rodrigo Pegado, Edgard Morya

Publications and Research

Background: Clinical impact of transcranial direct current stimulation (tDCS) alone for Parkinson’s disease (PD) is still a challenge. Thus, there is a need to synthesize available results, analyze methodologically and statistically, and provide evidence to guide tDCS in PD.

Objective: Investigate isolated tDCS effect in different brain areas and number of stimulated targets on PD motor symptoms.

Methods: A systematic review was carried out up to February 2021, in databases: Cochrane Library, EMBASE, PubMed/MEDLINE, Scopus, and Web of science. Full text articles evaluating effect of active tDCS (anodic or cathodic) vs. sham or control on motor symptoms of PD were …


Low-Intensity Ultrasonic Neuromodulation Of The Rat Hippocampus, Duc Nguyen Jan 2022

Low-Intensity Ultrasonic Neuromodulation Of The Rat Hippocampus, Duc Nguyen

Dissertations and Theses

Techniques to non-invasively modulate brain activity are important for mapping human brain circuits, and also for the treatment of a host of neurological and psychiatric disorders marked by aberrant brain activity. Though a wide range of techniques for non-invasive neuromodulation have been proposed, the conventional approaches suffer from significant limitations. Most notably, focal stimulation of deep brain regions is presently only possible with invasive optogenetic and chemogenetic approaches that require craniotomies and genetic access to the brain.

Transcranial focused ultrasound stimulation (tFUS) possesses many of the characteristics desirable from a neuromodulation approach: non-invasiveness, a spatial resolution in the order of …


Network-Level Mechanisms Underlying Effects Of Transcranial Direct Current Stimulation (Tdcs) On Visuomotor Learning, Pejman Sehatpour, Clément Dondé, Matthew J. Hoptman, Johanna Kreither, Devin Adair, Elisa Dias, Blair Vail, Stephanie Rohrig, Gail Silipo, Javier Lopez-Calderon, Antigona Martinez, Daniel C. Javitt Dec 2020

Network-Level Mechanisms Underlying Effects Of Transcranial Direct Current Stimulation (Tdcs) On Visuomotor Learning, Pejman Sehatpour, Clément Dondé, Matthew J. Hoptman, Johanna Kreither, Devin Adair, Elisa Dias, Blair Vail, Stephanie Rohrig, Gail Silipo, Javier Lopez-Calderon, Antigona Martinez, Daniel C. Javitt

Publications and Research

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation approach in which low level currents are administered over the scalp to influence underlying brain function. Prevailing theories of tDCS focus on modulation of excitation-inhibition balance at the local stimulation location. However, network level effects are reported as well, and appear to depend upon differential underlying mechanisms. Here, we evaluated potential network-level effects of tDCS during the Serial Reaction Time Task (SRTT) using convergent EEG- and fMRI-based connectivity approaches. Motor learning manifested as a significant (p <.0001) shift from slow to fast responses and corresponded to a significant increase in beta-coherence (p <.0001) and fMRI connectivity (p <.01) particularly within the visual-motor pathway. Differential patterns of tDCS effect were observed within different parametric task versions, consistent with network models. Overall, these findings demonstrate objective physiological effects of tDCS at the network level that result in effective behavioral modulation when tDCS parameters are matched to network-level requirements of the underlying task.


Translational Modeling Of Non-Invasive Electrical Stimulation, Dennis Quangvinh Truong Jan 2019

Translational Modeling Of Non-Invasive Electrical Stimulation, Dennis Quangvinh Truong

Dissertations and Theses

Seminal work in the early 2000’s demonstrated the effect of low amplitude non-invasive electrical stimulation in people using neurophysiological measures (motor evoked potentials, MEPs). Clinical applications of transcranial Direct Current Stimulation (tDCS) have since proliferated, though the mechanisms are not fully understood. Efforts to refine the technique to improve results are on-going as are mechanistic studies both in vivo and in vitro. Volume conduction models are being applied to these areas of research, especially in the design and analysis of clinical montages. However, additional research on the parameterization of models remains.

In this dissertation, Finite Element Method (FEM) models of …