Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 69

Full-Text Articles in Engineering

Review Of Computational Models For Large-Scale Mdao Of Urban Air Mobility Concepts, Darshan Sarojini, Marius L. Ruh, Jiayao Yan, Luca Scotzniovsky, Nicholas C. Orndorff, Ru Xiang, Han Zhao, Joshua J. Krokowski, Michael Warner, Sebastiaan Pc Van Schie, Ashley Cronk, Alexandre T. R. Guibert, Jeffrey T. Chambers, Lauren Wolfe, Rachel Doring, Robin Despins, Cibin Joseph, Ryan Anderson, Andrew Ning, Hyunjune Gill, Seongkyu Lee, Zeyu Cheng, Zhi Cao, Chunting Mi, Y Shirley Meng, Christopher Silva, Jiun-Shyan Chen, H. Alicia Kim, John T. Hwang Jan 2024

Review Of Computational Models For Large-Scale Mdao Of Urban Air Mobility Concepts, Darshan Sarojini, Marius L. Ruh, Jiayao Yan, Luca Scotzniovsky, Nicholas C. Orndorff, Ru Xiang, Han Zhao, Joshua J. Krokowski, Michael Warner, Sebastiaan Pc Van Schie, Ashley Cronk, Alexandre T. R. Guibert, Jeffrey T. Chambers, Lauren Wolfe, Rachel Doring, Robin Despins, Cibin Joseph, Ryan Anderson, Andrew Ning, Hyunjune Gill, Seongkyu Lee, Zeyu Cheng, Zhi Cao, Chunting Mi, Y Shirley Meng, Christopher Silva, Jiun-Shyan Chen, H. Alicia Kim, John T. Hwang

Faculty Publications

The advent of Urban Air Mobility (UAM) has necessitated a paradigm shift in aircraft design from traditional regression methods to physics-based analysis and the use of modern computational methods. This paper explores the intricacies of UAM aircraft design, acknowledging the limitations of historical empirical equations and advocating for the use of physics-based tools in the early stages of the design process. It underscores the importance of Multidisciplinary Design, Analysis, and Optimization (MDAO) as a means to integrate physics-based tools for conceptual design, facilitating decisions on configuration and sizing. The paper presents a comprehensive survey and review of computational models across …


Economy Of Scale Of Energy Intensity In Aquifer Storage And Recovery (Asr), Alyson Haley Rapp Dec 2023

Economy Of Scale Of Energy Intensity In Aquifer Storage And Recovery (Asr), Alyson Haley Rapp

Theses and Dissertations

More water utilities are adopting Aquifer Storage and Recovery (ASR) to balance long-term water supply and demand. Due to large implementation and operation costs, ASR projects need to be optimized, particularly for energy use, which is a major operating expense. This study examines the relationships among energy use, recharge, and recovery at two ASR projects in the western United States. The major finding is an economy of scale for recovery processes, but not for gravity-fed recharge processes. The economy of scale found is as follows: the energy intensity recovered decreases with volume. This suggests it is more energy-efficient to recover …


Development Of The Tlvmie Force Field And A Standardized Methodology For Improved Pure-Component And Mixture Liquid Viscosity Predictions, Daniel J. Carlson Feb 2023

Development Of The Tlvmie Force Field And A Standardized Methodology For Improved Pure-Component And Mixture Liquid Viscosity Predictions, Daniel J. Carlson

Theses and Dissertations

Existing viscosity prediction methods and relevant literature are reviewed. An exhaustive review of group contribution, corresponding states, and interpolative prediction methods finds that even the best of these models produces large prediction errors and often require significant experimental data. Molecular dynamics simulation techniques for viscosity prediction are evaluated and compared to one another to determine the best choice for this work. A thorough investigation finds that Equilibrium Molecular Dynamics (EMD) simulations are the best option for reproducible and reliable liquid viscosity predictions. The many tuning parameters available in molecular dynamics simulations are investigated for their effects on prediction uncertainty and …


Low-Fidelity Design Optimization And Parameter Sensitivity Analysis Of Tilt-Rotor Evtol Electric Propulsion Systems, Tyler Critchfield, Andrew Ning Jan 2023

Low-Fidelity Design Optimization And Parameter Sensitivity Analysis Of Tilt-Rotor Evtol Electric Propulsion Systems, Tyler Critchfield, Andrew Ning

Faculty Publications

Urban air mobility requires a multidisciplinary approach to tackle the important chal- lenges facing the design of these aircraft. This work uses low-to-mid fidelity tools to model rotor aerodynamics, blade structures, vehicle aerodynamics, and electric propulsion for a tilt-rotor electric vertical takeoff and landing (eVTOL) aircraft. We use gradient-based design optimization and extensive parameter sensitivity analysis to explore the design space and complex tradeoffs of tilt-rotor distributed electric propulsion systems.


Sparsity For Gradient-Based Optimization Of Wind Farm Layouts, Benjamin T. Varela, Andrew Ning Jan 2023

Sparsity For Gradient-Based Optimization Of Wind Farm Layouts, Benjamin T. Varela, Andrew Ning

Faculty Publications

Optimizing wind farm layouts is an important step in designing an efficient wind farm. Optimizing wind farm layouts is also a difficult task due to computation times increasing with the number of turbines present in the farm. The most computationally expensive part of gradient- based optimization is calculating the gradient. In order to reduce the expense of gradient calculation, we performed a study on the use of sparsity in wind farm layout optimization. This paper presents the findings of the sparsity study and provides a method to use sparsity in wind farm layout optimization. We tested this sparsity method by …


Parametric Structural Optimization Of A Wheel Using The Flex Representation Method, Gregory John Vernon Dec 2022

Parametric Structural Optimization Of A Wheel Using The Flex Representation Method, Gregory John Vernon

Theses and Dissertations

The use of the finite element method within an optimization workflow is fraught with challenges that limit the automation of such workflows. These challenges are inherent to the traditional finite element formulations which are heavily dependent on a manual meshing process that introduces variability that is challenging to account for within an automated workflow. The recently developed flex representation method (FRM) provides a salient solution to the manual meshing process without sacrificing solution accuracy. In response to the development of FRM a global automotive company requested a study to explore the applicability of FRM to one of their sizing-optimization problems: …


Hybrid Machine Learning And Physics-Based Modeling Approaches For Process Control And Optimization, Junho Park Dec 2022

Hybrid Machine Learning And Physics-Based Modeling Approaches For Process Control And Optimization, Junho Park

Theses and Dissertations

Transformer neural networks have made a significant impact on natural language processing. The Transformer network self-attention mechanism effectively addresses the vanishing gradient problem that limits a network learning capability, especially when the time series gets longer or the size of the network gets deeper. This dissertation examines the usage of the Transformer model for time-series forecasting and customizes it for a simultaneous multistep-ahead prediction model in a surrogate model predictive control (MPC) application. The proposed method demonstrates enhanced control performance and computation efficiency compared to the Long-short term memory (LSTM)-based MPC and one-step-ahead prediction model structures for both LSTM and …


Selecting And Optimizing Origami-Based Patterns For Deployable Space Systems, Diana Stefania Bolanos Jul 2022

Selecting And Optimizing Origami-Based Patterns For Deployable Space Systems, Diana Stefania Bolanos

Theses and Dissertations

This thesis addresses the design difficulties encountered when designing deployable origami-based arrays. Specific considerations regarding thickness accommodation, deployment, and parameter modifications are discussed. Patterns such as the Miura-ori, flasher, and hexagon are investigated, with emphasis placed on pattern modification from zero-thickness to finite-thickness. Applying origami principles to form engineering solutions is a complicated task. Competing requirements may create confusion around which pattern is most favorable for the space array application. Implementing origami into a finite-thickness, engineered system poses challenges that are not manifest in a zero-thickness model. As such, it is important to understand and address the limitations of the …


Considering Social Impact When Engineering For Global Development, Hans Jorgen Ottosson Jul 2021

Considering Social Impact When Engineering For Global Development, Hans Jorgen Ottosson

Theses and Dissertations

Every manufactured product has an environmental impact, a social impact, and an economic impact. As engineers, we should do our best to understand how our design decisions influence these impacts (the three pillars of sustainability), and at the same time make decisions that collectively lead to maximum positive impacts, or minimum negative impacts on the economy, environment, and society. Many times, engineers show interest and want to design for all three pillars of sustainability but are often constrained to focus on the environmental and economic aspects, leaving out social sustainability due to lack of understanding and resources. In practice, this …


Using Blade Element Momentum Methods With Gradient-Based Design Optimization, Andrew Ning May 2021

Using Blade Element Momentum Methods With Gradient-Based Design Optimization, Andrew Ning

Faculty Publications

Blade element momentum methods are widely used for initial aerodynamic analysis of propellers and wind turbines. A wide variety of correction methods exist, but common to all variations, a pair of residuals are converged to ensure compatibility between the two theories. This paper shows how to rearrange the sequence of calculations reducing to a single residual. This yields the significant advantage that convergence can be guaranteed and to machine precision. Both of these considerations are particularly important for gradient- based optimization where a wide variety of atypical inputs may be explored, and where tight convergence is necessary for accurate derivative …


A Comparison Of Aerodynamic Models For Optimizing The Takeoff And Transition Of A Bi-Wing Tailsitter, Ryan Anderson, Jacob Willis, Jacob Johnson, Andrew Ning, Randal Beard Jan 2021

A Comparison Of Aerodynamic Models For Optimizing The Takeoff And Transition Of A Bi-Wing Tailsitter, Ryan Anderson, Jacob Willis, Jacob Johnson, Andrew Ning, Randal Beard

Faculty Publications

Electric vertical takeoff and landing (eVTOL) aircraft take advantage of distributed electric propulsion as well as aerodynamic lifting surfaces to take off vertically and perform long-duration flights. Complex aerodynamic interactions and a hard-to-predict transition maneuver from hover to wing-borne flight are one challenge in their development. To address this, we compare three different interaction models of varying fidelity for optimizing the transition trajectory of a biplane tailsitter. The first model accounts for simplified rotor-on-wing interactions using momentum theory, while the other two account for wing-on-wing interactions using a vortex lattice method and rotor-on-wing aerodynamic interactions using blade element momentum theory. …


Optimization Of Turbine Tilt In A Wind Farm, James Cutler, Andrew P.J. Stanley, Jared J. Thomas, Andrew Ning Jan 2021

Optimization Of Turbine Tilt In A Wind Farm, James Cutler, Andrew P.J. Stanley, Jared J. Thomas, Andrew Ning

Faculty Publications

Wind farm power production is significantly affected by upstream turbines creating wakes of slower wind speeds that overlap the rotor swept areas of downstream turbines. By optimizing the tilt angle of the turbines in a farm, wakes may be deflected away from downstream turbines, increasing the overall energy production. In this study, we optimized the tilt angle of turbines in a wind farm to maximize energy production. We used an analytic wake model modified for gradient-based optimization to consider wake deflection from tilt. We considered optimizing the tilt angle of each turbine assuming that it remained fixed for the lifetime …


Instructional Case Studies In The Field Of Windfarm Optimization, N. Francesco Baker Dec 2020

Instructional Case Studies In The Field Of Windfarm Optimization, N. Francesco Baker

Theses and Dissertations

Wind farm layout optimization is a multidisciplinary undertaking, requiring students and researchers to integrate many skillsets in order to optimize turbine placement. There is currently a lack of useful benchmarking exercises for participants in the field to compare the efficacy of their methods. This work details the construction and completion of a set of four case studies meant to satisfy this need, with the hope of providing some insight into useful layout optimization approaches. These case studies are intended to also serve as instructive introductory exercises with which newcomers researching wind energy may incrementally practice and increase their abilities.The first …


Characterization And Optimization Of An Image Charge Detector For The Measurement Of Martian Dust, Jace Rozsa Aug 2020

Characterization And Optimization Of An Image Charge Detector For The Measurement Of Martian Dust, Jace Rozsa

Theses and Dissertations

Image charge detector (ICD) technology has existed for decades. However, not until recently has an ICD been proposed for use in space exploration, specifically for studying the characteristics of the dust on Mars. Characterizing the dust on Mars is crucial for designing equipment to aid manned missions. It also improves our understanding of Mars' climate and weather systems. An ICD utilizing printed circuit board (PCB) electrodes, coupled with a custom differential amplifier, is best suited for this type of measurement because of its light weight, simplicity, and noise performance. The noise floor of our particular amplifier is measured to be …


Investigation Of Isotruss® Structures In Compression Using Numerical, Dimensional, And Optimization Methods, Hanna Belle Opdahl Aug 2020

Investigation Of Isotruss® Structures In Compression Using Numerical, Dimensional, And Optimization Methods, Hanna Belle Opdahl

Theses and Dissertations

The purpose of this research is to investigate the structural efficiency of 8-node IsoTruss structures subject to uniaxial compression using numerical, dimensional, and optimization methods. The structures analyzed herein are based on graphite/epoxy specimens that were designed for light-weight space applications, and are approximately 10 ft. (3 m) long and 0.3 lb. (0.14 kg). The principal failure modes considered are material failure, global buckling, local buckling at the bay level, and longitudinal strut buckling. Studies were performed with the following objectives: to correlate finite element predictions with experimental and analytical methods; to derive analytical expressions to predict bay-level buckling; to …


Survey Of 8 Uav Set-Covering Algorithms For Terrain Photogrammetry, Joshua Hammond, Cory Vernon, Trent Okeson, Benjamin Barrett, Samuel Arce, Valerie Newell, Joseph Janson, Kevin Franke, John Hedengren Jul 2020

Survey Of 8 Uav Set-Covering Algorithms For Terrain Photogrammetry, Joshua Hammond, Cory Vernon, Trent Okeson, Benjamin Barrett, Samuel Arce, Valerie Newell, Joseph Janson, Kevin Franke, John Hedengren

Faculty Publications

Remote sensing with unmanned aerial vehicles (UAVs) facilitates photogrammetry for environmental and infrastructural monitoring. Models are created with less computational cost by reducing the number of photos required. Optimal camera locations for reducing the number of photos needed for structure-from-motion (SfM) are determined through eight mathematical set-covering algorithms as constrained by solve time. The algorithms examined are: traditional greedy, reverse greedy, carousel greedy (CG), linear programming, particle swarm optimization, simulated annealing, genetic, and ant colony optimization. Coverage and solve time are investigated for these algorithms. CG is the best method for choosing optimal camera locations as it balances number of …


Development Of A 3d Computational Vocal Fold Model Optimization Tool, Austin C. Vaterlaus Jun 2020

Development Of A 3d Computational Vocal Fold Model Optimization Tool, Austin C. Vaterlaus

Theses and Dissertations

One of the primary objectives of voice research is to better understand the biomechanics of voice production and how changes in properties of the vocal folds (VFs) affect voice ability and quality. Synthetic VF models provide a way to observe how changes in geometry and material property affect voice biomechanics. This thesis seeks to evaluate an approach of using a genetic algorithm to design synthetic VF models in three ways: first, through the development of a computationally cost-effective 3D vocal fold model; second, by creating and optimizing a variation of this model; and third, by validating the approach. To reduce …


Robust Real-Time Model Predictive Control For High Degree Of Freedom Soft Robots, Phillip Edmond Hyatt Jun 2020

Robust Real-Time Model Predictive Control For High Degree Of Freedom Soft Robots, Phillip Edmond Hyatt

Theses and Dissertations

This dissertation is focused on the modeling and robust model-based control of high degree-of-freedom (DoF) systems. While most of the contributions are applicable to any difficult-to-model system, this dissertation focuses specifically on applications to large-scale soft robots because their many joints and pressures constitute a high-DoF system and their inherit softness makes them difficult to model accurately. First a joint-angle estimation and kinematic calibration method for soft robots is developed which is shown to decrease the pose prediction error at the end of a 1.5 m robot arm by about 85\%. A novel dynamic modelling approach which can be evaluated …


Efficient Incorporation Of Fatigue Damage Constraints In Wind Turbine Blade Optimization, Bryce Ingersoll, Andrew Ning Jan 2020

Efficient Incorporation Of Fatigue Damage Constraints In Wind Turbine Blade Optimization, Bryce Ingersoll, Andrew Ning

Faculty Publications

Wind turbine design is a challenging multidisciplinary optimization problem, where the aerodynamic shapes, structural member sizing, and material composition must all be determined and optimized. Some previous blade design methods incorporate static loading with an added safety factor to account for dynamic effects. Others incorporate dynamic loading, but in general limit the evaluation to a few design cases. By not fully incorporating the dynamic loading of the wind turbine, the final turbine blade design is either too conservative by overemphasizing the dynamic effects or infeasible by failing to adequately account for these effects. We propose an iterative method that estimates …


Variance Reduction In Wind Farm Layout Optimization, Bertelsen Gagakuma Dec 2019

Variance Reduction In Wind Farm Layout Optimization, Bertelsen Gagakuma

Theses and Dissertations

As demand for wind power continues to grow, it is becoming increasingly important to minimize the risk, characterized by the variance, that is associated with long-term power forecasts. This thesis investigated variance reduction in power forecasts from wind farm layout optimization.The problem was formulated as a multi-objective optimization one of maximizing mean-plant-power and minimizing variance. The ε−constraint method was used to solve the bi-objectiveproblem in a two-step optimization framework where two sequential optimizations are performed. The first is maximizing mean wind farm power alone and the second, minimizing variance with a constraint on the mean power which is the value …


Enabling Autonomous Operation Of Micro Aerial Vehicles Through Gps To Gps-Denied Transitions, James Scott Jackson Nov 2019

Enabling Autonomous Operation Of Micro Aerial Vehicles Through Gps To Gps-Denied Transitions, James Scott Jackson

Theses and Dissertations

Micro aerial vehicles and other autonomous systems have the potential to truly transform life as we know it, however much of the potential of autonomous systems remains unrealized because reliable navigation is still an unsolved problem with significant challenges. This dissertation presents solutions to many aspects of autonomous navigation. First, it presents ROSflight, a software and hardware architure that allows for rapid prototyping and experimentation of autonomy algorithms on MAVs with lightweight, efficient flight control. Next, this dissertation presents improvments to the state-of-the-art in optimal control of quadrotors by utilizing the error-state formulation frequently utilized in state estimation. It is …


Takeoff And Performance Tradeoffs Of Retrofit Distributed Electric Propulsion For Urban Transport, Kevin Moore, Andrew Ning Aug 2019

Takeoff And Performance Tradeoffs Of Retrofit Distributed Electric Propulsion For Urban Transport, Kevin Moore, Andrew Ning

Faculty Publications

While vertical takeoff and landing aircraft have shown promise for urban air transport, distributed electric propulsion on existing aircraft may offer immediately implementable alternatives. Distributed electric propulsion could potentially decrease takeoff distances enough to enable thousands of potential inter-city runways. This conceptual study explores the effects of a retrofit of open-bladed electric propulsion units. To model and explore the design space we use blade element momentum method, vortex lattice method, linear-beam finite element analysis, classical laminate theory, composite failure, empirically-based blade noise modeling, motor and motor-controller mass models, and gradient-based optimization. With liftoff time of seconds and the safe total …


Application And Evaluation Of Full-Field Surrogate Models In Engineering Design Space Exploration, Christopher Murray Thelin Jul 2019

Application And Evaluation Of Full-Field Surrogate Models In Engineering Design Space Exploration, Christopher Murray Thelin

Theses and Dissertations

When designing an engineering part, better decisions are made by exploring the entire space of design variations. This design space exploration (DSE) may be accomplished manually or via optimization. In engineering, evaluating a design during DSE often consists of running expensive simulations, such as finite element analysis (FEA) in order to understand the structural response to design changes. The computational cost of these simulations can make thorough DSE infeasible, and only a relatively small subset of the designs are explored. Surrogate models have been used to make cheap predictions of certain simulation results. Commonly, these models only predict single values …


An Examination Into The Defining Characteristics Of Flexible Solar Aircraft Configurations Through Optimization, Taylor Mcdonnell, Andrew Ning Jun 2019

An Examination Into The Defining Characteristics Of Flexible Solar Aircraft Configurations Through Optimization, Taylor Mcdonnell, Andrew Ning

Faculty Publications

This paper examines the defining characteristics of various solar aircraft configurations through gradient-based multidisciplinary design optimization. We first present a general gradient-based solar aircraft optimization framework which accounts for nonlinear aeroelastic effects resulting from structural flexibility. We then apply this framework to several discrete SR- HALE aircraft geometric, structural, and propulsion system configuration choices to determine the defining characteristics of each configuration choice.


Model Predictive Automatic Control Of Sucker Rod Pump System With Simulation Case Study, Brigham Hansen, Brandon Tolbert, Cory Vernon, John Hedengren Feb 2019

Model Predictive Automatic Control Of Sucker Rod Pump System With Simulation Case Study, Brigham Hansen, Brandon Tolbert, Cory Vernon, John Hedengren

Faculty Publications

This work enables accelerated fluid recovery in oil and gas reservoirs by automatically controlling fluid height and bottomhole pressure in wells. Several literature studies show significant increase in recovered oil by determining a target bottomhole pressure but rarely consider how to control to that value. This work enables those benefits by maintaining bottomhole pressure or fluid height. Moving Horizon Estimation (MHE) determines uncertain well parameters using only common surface measurements. A Model Predictive Controller (MPC) adjusts the stroking speed of a sucker rod pump to maintain fluid height. Pump boundary conditions are simulated with Mathematical Programs with Complementarity Constraints (MPCCs) …


The Effect Of Communication And Vehicle Properties On The Search Performance Of A Swarm Of Unmanned Aerial Vehicles, Jenna E. Newcomb, Andrew Ning Jan 2019

The Effect Of Communication And Vehicle Properties On The Search Performance Of A Swarm Of Unmanned Aerial Vehicles, Jenna E. Newcomb, Andrew Ning

Faculty Publications

An unmanned aerial vehicle (UAV) swarm allows for a more time-efficient method of searching a specified area than a single UAV or piloted plane. There are a variety of factors that affect how well an area is surveyed. We specifically analyzed the effect both vehicle properties and communication had on the swarm search performance. We used non-dimensionalization to examine the effect vehicle properties had on search performance so the results can be applied to any domain size with any number and type of vehicle. We found that even if vehicles could only sense 10% of the grid area at any …


Internal Deformation Measurements And Optimization Of Synthetic Vocal Fold Models, Cassandra Jeanne Taylor Dec 2018

Internal Deformation Measurements And Optimization Of Synthetic Vocal Fold Models, Cassandra Jeanne Taylor

Theses and Dissertations

Developing lifelike vocal fold models is challenging due to various associatedbiomechanical complexities. Nevertheless, the development and analysis of improved vocal foldmodels is worthwhile since they are valuable tools for gaining insight into human vocal foldvibratory, aerodynamic, and acoustic response characteristics. This thesis seeks to contribute tothe development of computational and physical vocal fold modeling in two ways. First is byintroducing a method of obtaining internal deformation fields within vibrating synthetic vocal foldmodels; second is by presenting an optimization algorithm coupled with a computational vocalfold model to optimize geometry and stiffness of a synthetic vocal fold model to achieve morerealistic vibration …


Large-Scale Non-Linear Dynamic Optimization For Combining Applications Of Optimal Scheduling And Control, Logan Daniel Beal Dec 2018

Large-Scale Non-Linear Dynamic Optimization For Combining Applications Of Optimal Scheduling And Control, Logan Daniel Beal

Theses and Dissertations

Optimization has enabled automated applications in chemical manufacturing such as advanced control and scheduling. These applications have demonstrated enormous benefit over the last few decades and continue to be researched and refined. However, these applications have been developed separately with uncoordinated objectives. This dissertation investigates the unification of scheduling and control optimization schemes. The current practice is compared to early-concept, light integrations, and deeper integrations. This quantitative comparison of economic impacts encourages further investigation and tighter integration. A novel approach combines scheduling and control into a single application that can be used online. This approach implements the discrete-time paradigm from …


Optimization-Based Spatial Positioning And Energy Management For Unmanned Aerial Vehicles, Ronald Abraham Martin Dec 2018

Optimization-Based Spatial Positioning And Energy Management For Unmanned Aerial Vehicles, Ronald Abraham Martin

Theses and Dissertations

This research applies techniques from the field of optimization to spatial positioning and energy management in Unmanned Aerial Vehicles (UAVs). Two specific areas are treated: optimization of UAV view plans for 3D modeling of infrastructure, and trajectory optimization of solar powered high-altitude long-endurance (HALE) UAVs. Structure-from-Motion (SfM) is a computer vision technique for creating 3D models from 2D images. View planning is the process of planning image sets that will effectively model a given scene. First, a genetic algorithm based view planning approach is demonstrated. A novel terrain simulation environment is developed, and the algorithm is tested at multiple sites …


Efficient Incorporation Of Fatigue Damage Constraints In Wind Turbine Blade Optimization, Bryce Taylor Ingersoll Aug 2018

Efficient Incorporation Of Fatigue Damage Constraints In Wind Turbine Blade Optimization, Bryce Taylor Ingersoll

Theses and Dissertations

Improving the wind turbine blade design has a significant effect on the efficiency of the wind turbine. This is a challenging multi-disciplinary optimization problem. During the blade design process, the aerodynamic shapes, sizing of the structural members, and material composition must all be determined and optimized. Some previous blade design methods incorporate the wind turbine's static response with an added safety factor to account for neglected dynamic effects. Others incorporate the dynamic response, but in general is limited to a few design cases. By not fully incorporating the dynamic response of the wind turbine, the final turbine blade design is …