Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 51

Full-Text Articles in Engineering

Methods For Designing Compact And Deployable Origami-Inspired Flat-Foldable Spacecraft Antennas And Other Systems, Collin Ryan Ynchausti May 2023

Methods For Designing Compact And Deployable Origami-Inspired Flat-Foldable Spacecraft Antennas And Other Systems, Collin Ryan Ynchausti

Theses and Dissertations

There are times when it is desirable for devices to be stowed compactly, ``transported'' to the location of their desired use, and then deployed to another stable shape or configuration to perform their designed function. Origami-based mechanisms are beneficial in these cases due to their compact, folded nature and large deployments. Unlike traditional mechanical design, compliant mechanism and origami-based design approaches inherently have coupled characteristics, creating complex design problems. The research presented here discusses metrics, methods, and designs to aid in the design of origami-adapted and compliant mechanisms, focusing on the design case of deployable space systems. First, the hexagonal …


Kinetostatic And Dynamic Modeling Of Flexure-Based Compliant Mechanisms: A Survey, Mingxiang Ling, Larry L. Howell, Junyi Cao, Guimin Chen Mar 2023

Kinetostatic And Dynamic Modeling Of Flexure-Based Compliant Mechanisms: A Survey, Mingxiang Ling, Larry L. Howell, Junyi Cao, Guimin Chen

Faculty Publications

Flexure-based compliant mechanisms are becoming increasingly promising in precision engineering, robotics and other applications due to the excellent advantages of no friction, no backlash, no wear, and minimal requirement of assembly. Because compliant mechanisms have inherent coupling of kinematic- mechanical behaviors with large deflections and/or complex serial-parallel configurations, the kinetostatic and dynamic analyses are challenging in comparison to their rigid-body counterparts. To address these challenges, a variety of techniques have been reported in a growing stream of publications. This paper surveys and compares the conceptual ideas, key advances, applicable scopes and open problems of the state-of-the-art kinetostatic and dynamic modeling …


A Cprbm-Based Method For Large-Deflection Analysis Of Contact-Aided Compliant Mechanisms Considering Beam-To-Beam Contacts, Mohui Jin, Benliang Zhu, Jiasi Mo, Zhou Yang, Xianmin Zhang, Larry L. Howell Mar 2023

A Cprbm-Based Method For Large-Deflection Analysis Of Contact-Aided Compliant Mechanisms Considering Beam-To-Beam Contacts, Mohui Jin, Benliang Zhu, Jiasi Mo, Zhou Yang, Xianmin Zhang, Larry L. Howell

Faculty Publications

Contact-aided compliant mechanisms (CCMs) utilize contact to achieve enhanced functionality. The contact phenomenon of CCMs increases the difficulties of their analysis and design, especially when they exhibit beam-to-beam contact. Considering the particularity of CCMs analysis, which is more about the mechanisms’ deformation, this paper presents a numerical method to analyze the large deflection and stress of the CCMs considering beam-to-beam contacts. Based on our previous work on beam-to-rigid contact, the large deformation of general beams in CCMs is modeled by using the chained pseudo-rigid-body model (CPRBM). An approximation based on the geometric information of CPRBM is proposed in this paper …


Regional Stiffness Reduction Using Lamina Emergent Torsional Joints For Flexible Printed Circuit Board Design, Bryce P. Defigueiredo, Brian Dale Russell, Trent K. Zimmerman, Larry L. Howell Jan 2023

Regional Stiffness Reduction Using Lamina Emergent Torsional Joints For Flexible Printed Circuit Board Design, Bryce P. Defigueiredo, Brian Dale Russell, Trent K. Zimmerman, Larry L. Howell

Faculty Publications

Flexible printed circuit boards (PCBs) make it possi- ble for engineers to design devices that use space efficiently

and can undergo changes in shape and configuration. How- ever, they also suffer from trade-offs due to non-ideal mate- rial properties. Here, a method is presented that allows en- gineers to introduce regions of flexibility in otherwise rigid

PCB substrates. This method employs geometric features to reduce local stiffness in the PCB, rather than reducing

the global stiffness by material selection. Analytical and fi- nite element models are presented to calculate the maximum

stresses caused by deflection. An example device is produced …


Origami-Based Design Of Conceal-And-Reveal Systems, Bryce P. Defigueiredo, Kyler A. Tolman, Spencer P. Magleby, Nathan A. Pehrson, Erica Crampton, Larry L. Howell Jan 2023

Origami-Based Design Of Conceal-And-Reveal Systems, Bryce P. Defigueiredo, Kyler A. Tolman, Spencer P. Magleby, Nathan A. Pehrson, Erica Crampton, Larry L. Howell

Faculty Publications

This work introduces a type of motion termed “conceal-and-reveal” which is characterized by a state that protects a payload, a state that exposes the payload, and coupled motions between these two states. As techniques for thick, rigid origami-based engineering designs are being developed, origami is becoming increasingly more

attractive as inspiration for complex systems. This paper proposes a process for designing origami-based conceal- and-reveal systems, which can be generalized to design similar thick, rigid origami-based systems. The process

is demonstrated through the development of three conceal-and-reveal systems that present a luxury product to the consumer. The three designs also confirm …


A Pseudo-Static Model For Dynamic Analysis On Frequency Domain Of Distributed Compliant Mechanisms, Mingxiang Ling, Larry L. Howell, June Cao, Zhou Jiang Jan 2023

A Pseudo-Static Model For Dynamic Analysis On Frequency Domain Of Distributed Compliant Mechanisms, Mingxiang Ling, Larry L. Howell, June Cao, Zhou Jiang

Faculty Publications

This paper presents a pseudo-static modeling methodology for dynamic analysis of distributed compliant mechanisms to provide accurate and efficient solutions. First, a dynamic stiffness matrix of the flexible beam is deduced, which has the same definition and a similar form as the traditional static compliance/stiffness matrix but is frequency-dependent. Second, the pseudo-static modeling procedure for the dynamic analysis is implemented in a statics-similar way. Then, all the kinematic, static and dynamic performances of compliant mechanisms can be analyzed based on the pseudo- static model. The superiority of the proposed method is that when it is used for the dynamic modeling …


Laser Forming Of Compliant Mechanisms And Flat-Foldable Furniture, Daniel Calvin Ames Dec 2021

Laser Forming Of Compliant Mechanisms And Flat-Foldable Furniture, Daniel Calvin Ames

Theses and Dissertations

Compliant mechanisms are useful for improving existing machines and creating new ones that were not previously possible. They also help us to think of new methods and technologies needed to both improve existing systems as well as manufacture systems that have not been done before. The purpose of this thesis is to show novel implementations of compliant mechanisms into folding systems, and to show new methods for fabricating such mechanisms with nontraditional materials and on difficult scales. Folding systems are shown in furniture applications with chairs, stools, and childcare furniture applications as results of research into how such structures could …


Characterizing Behaviors And Functions Of Joints For Design Of Origami-Based Mechanical Systems, Nathan Chandler Brown Sep 2021

Characterizing Behaviors And Functions Of Joints For Design Of Origami-Based Mechanical Systems, Nathan Chandler Brown

Theses and Dissertations

This thesis addresses a number of challenges designers face when designing deployable origami-based arrays, specifically joint selection, design, and placement within an array. In deployable systems, the selection and arrangement of joint types is key to how the system functions. The kinematics and performance of an array is directly affected by joint performance. This work develops joint metrics which are then used to compare joint performances, constructing a tool designers can use when selecting joints for an origami array. While often a single type of joint is used throughout an array, this work shows how using multiple types of joints …


Exploration Of Constant-Force Wristbands For A Wearable Health Device, Thomas Alexander Naylor Jul 2021

Exploration Of Constant-Force Wristbands For A Wearable Health Device, Thomas Alexander Naylor

Theses and Dissertations

Wearable Health Devices (WHDs) are an emerging technology that enables continuous monitoring of vital signs during daily life. Issues with constant and consistent data acquisition have been found while WHD technology has developed. The force of the measurement area and movement of the sensors are key mechanical issues that need to be solved for WHDs to become a viable way to continuously monitor health conditions. This work explores Constant-Force Mechanisms (CFMs) as a solution to problems the current WHD industry faces. Additionally, the relationship between force provided from the mechanism, sensor pressure on the wrist, patient comfort, and sensor readings …


On Creases And Curved Links: Design Approaches For Predicting And Customizing Behaviors In Origami-Based And Developable Mechanisms, Jared J. Butler Aug 2020

On Creases And Curved Links: Design Approaches For Predicting And Customizing Behaviors In Origami-Based And Developable Mechanisms, Jared J. Butler

Theses and Dissertations

This work develops models and tools to help designers address the challenges associated with designing origami-based and developable mechanisms. These models utilize strain energy, kinematics, compliant mechanisms, and graphical techniques to make the design of origami-based and developable mechanisms approachable and intuitive. Origami-based design tools are expanded through two methods. First presented is a generalized approach for identifying single-output mechanical advantage for a multiple-input compliant mechanism, such as many origami-based mechanisms. The model is used to predict the force-deflection behavior of an origami-based mechanism (Oriceps) and is verified with experimental data from magnetic actuation of the mechanism. Second is a …


Developing Origami-Based Approaches To Realize Novel Architectures And Behaviors For Deployable Space Arrays, Nathan Alan Pehrson Oct 2019

Developing Origami-Based Approaches To Realize Novel Architectures And Behaviors For Deployable Space Arrays, Nathan Alan Pehrson

Theses and Dissertations

Origami-based approaches for the folding of thick materials for specific application to large deployable space arrays is explored in this work. The folding approaches presented utilize strain energy, spatial kinematics, membranes, compliant mechanisms, and or in combination together to fold finite-thickness materials viewed through the lens of origami-based engineering. Novel architectures and behaviors of mechanisms are developed to achieve packaging efficiency, deployment, and self-stiffening. A method for the folding of monolithic thick-sheet materials is developed by incorporating compliant mechanisms into the material itself to strategically add degrees of freedom. The design and characterization of the compliant mechanisms with consideration to …


Joint Analysis Of And Applications For Devices With Expanding Motions, Kendall Hal Seymour Jul 2019

Joint Analysis Of And Applications For Devices With Expanding Motions, Kendall Hal Seymour

Theses and Dissertations

Origami has been extensively studied by engineers for its unique motions and ability to collapse to small volumes. Techniques have been studied for replicating origami-like folding motion in thick materials, but limited practical applications of these techniques have been demonstrated. Developable mechanisms are a new mechanism type that has a similar ability to collapse to a low profile. The cylindrical developable mechanism has the ability to emerge from and conform to a cylindrical surface. In this work, a few practical applications of devices with novel expanding motions are presented. The design and testing of an origami-inspired deployable ballistic barrier, which …


Developing New Classes Of Thick-Origami-Based Mechanisms: Conceal-And-Reveal Motion And Folding Printed Circuit Boards, Bryce Parker De Figueiredo Nov 2017

Developing New Classes Of Thick-Origami-Based Mechanisms: Conceal-And-Reveal Motion And Folding Printed Circuit Boards, Bryce Parker De Figueiredo

Theses and Dissertations

Origami-adapted mechanisms form the basis of an increasing number of engineered systems. As most of these systems require the use of non-paper materials, various methods for accommodating thickness have been developed. These methods have opened new avenues for origami-based design. This work introduces approaches for the design of two new classes of thick-origami systems and demonstrates the approaches in hardware. One type of system, called "conceal-and-reveal,'' is introduced, and a method of designing these mechanisms is developed. Techniques are also developed for designing folding printed circuit boards which are fabricated from a single sheet of material. This enables areas of …


Selecting Surrogate Folds For Use In Origami-Based Mechanisms And Products, Jason Tyler Allen Apr 2017

Selecting Surrogate Folds For Use In Origami-Based Mechanisms And Products, Jason Tyler Allen

Theses and Dissertations

Origami-based design is increasing in popularity as its benefits and advantages become better understood and explored. However, many opportunities still exist for the application of origami principles to engineered designs, especially in the use of non-paper, thick sheet materials. One specific area utilizing thick sheet materials that is especially promising is origami-based mechanisms that require electrical power transfer applications. Many of these opportunities can be met by the use of surrogate folds. This thesis provides methods and frameworks that can be used by engineers to efficiently select and design surrogate folds for use in origami-based mechanisms and products. Surrogate folds …


Stiffness Reduction Strategies For Additively Manufactured Compliant Mechanisms, Ezekiel G. Merriam Apr 2016

Stiffness Reduction Strategies For Additively Manufactured Compliant Mechanisms, Ezekiel G. Merriam

Theses and Dissertations

This work develops and examines design strategies for reducing the stiffness of 3D-printed compliant mechanisms. The three aspects of a flexure that determine its stiffness are well known: material, boundary conditions, and geometry. In a highly constrained design space however, flexure stiffness may remain unacceptably high even while arriving at the limits of design constraints. In this work, changes to geometry and boundary conditions are examined that lead to drastically reduced stiffness behavior without changing flexure thickness, width, or length. Changes to geometry can result in very complex mechanisms. However, 3D printing enables almost arbitrarily complex geometries. This dissertation presents …


Curved-Folding-Inspired Deployable Compliant Rolling-Contact Element (D-Core), Todd Nelson, Robert Lang, Spencer P. Magleby, Larry L. Howell Jun 2015

Curved-Folding-Inspired Deployable Compliant Rolling-Contact Element (D-Core), Todd Nelson, Robert Lang, Spencer P. Magleby, Larry L. Howell

Faculty Publications

This work describes a deployable compliant rolling-contact element joint (DCORE joint) that employs curved-folding origami techniques to enable transition from a flat to deployed state. These deployable joints can be manufactured from a single sheet of material. Two fundamental configurations of the D-CORE are presented. The first configuration allows for motion similar to that of a Jacob’s ladder when the joint is in a planar state while achieving the motion of a CORE when in the deployed state. The second configuration constrains all degrees of freedom to create a static structure when the joint is in the planar state and …


A Compliant Mechanism-Based Variable-Stiffness Joint, Jacob Marc Robinson Apr 2015

A Compliant Mechanism-Based Variable-Stiffness Joint, Jacob Marc Robinson

Theses and Dissertations

A review of current variable-stiffness actuators reveals a need for more simple, cost effective, and lightweight designs that can be easily incorporated into a variety of human-interactive robot platforms. This thesis considers the potential use of compliant mechanisms to improve the performance of variable-stiffness actuators. The advantages and disadvantages of various concepts using compliant mechanisms are outlined, along with ideas for further exploration. A new variable-stiffness actuator that uses a compliant flexure as the elastic element has been modeled, built, and tested. This new design involves a variable stiffness joint that makes use of a novel variable transmission. A prototype …


Compliant Mechanisms For Deployable Space Systems, Shannon Alisa Zirbel Nov 2014

Compliant Mechanisms For Deployable Space Systems, Shannon Alisa Zirbel

Theses and Dissertations

The purpose of this research is to develop fundamentals of compliant mechanisms in deployable space systems. The scope was limited to creating methods for thick origami, developing compliant deployable solar arrays, and developing methods for stowing and deploying the arrays. The research on actuation methods was focused on a one-time deployment of the array. Concepts for both passive and active actuation were considered. The primary objective of this work was to develop approaches to accommodate thickness in origami-based deployable arrays with a high ratio of deployed-to-stowed diameter. The HanaFlex design was derived from the origami flasher model and is developed …


Compliant Joints Suitable For Use As Surrogate Folds, Isaac L. Delimont Aug 2014

Compliant Joints Suitable For Use As Surrogate Folds, Isaac L. Delimont

Theses and Dissertations

Origami-inspired design is an emerging field capable of producing compact and efficient designs. The object of a surrogate fold is to provide a fold-like motion in a non-paper material without undergoing yielding. Compliant mechanisms provide a means to achieve these objectives as large deflections are achieved. The purpose of this thesis is to present a summary of existing compliant joints suitable for use as surrogate folds. In doing so, motions are characterized which no existing compliant joint provides. A series of compliant joints is proposed which provides many of these motions. The possibility of patterning compliant joints to form an …


Articulated Spine For A Robot To Assist Children With Autism, Brandon M. Norton Jul 2014

Articulated Spine For A Robot To Assist Children With Autism, Brandon M. Norton

Theses and Dissertations

Autism spectrum disorder (ASD) affects about 1.5 million individuals in the US alone. The consequences of ASD affect families, caregivers, and social structures. This thesis adds to a growing group of people performing research on mitigating the effects of autism through robotics. Children with ASD tend to interact with robots more easily than with other humans. The goal of robotic therapy is not to help children interact with robots, but to generalize the behavior to humans. An articulated spine is a key to human emotional expression through shaping, weight shifting, and flow. Despite this importance, this feature is all but …


Origami-Based Design For Engineering Applications, Kevin Campbell Francis Sep 2013

Origami-Based Design For Engineering Applications, Kevin Campbell Francis

Theses and Dissertations

Origami can be a powerful source of design inspiration in the creation of reconfigurable systems with unparalleled performance. This thesis provides fundamental tools for designers to employ as origami-based designs are pursued in their respective fields of expertise. The first chapter introduces origami and makes connections between origami and engineering design through a survey of engineered applications and characterizing the relationship between origami and compliant mechanisms. The second chapter evaluates the creasing of non-paper sheet materials, such as plastics and metals, to facilitate origami-based compliant mechanism design. Although it is anticipated that most origami-based design will result from surrogate folds …


A Study Of Action Origami As Systems Of Spherical Mechanisms, Landen A. Bowen Jul 2013

A Study Of Action Origami As Systems Of Spherical Mechanisms, Landen A. Bowen

Theses and Dissertations

Origami, the Japanese art of paper folding, has been used previously to inspire engineering solutions for compact, deployable designs. Action origami, the subset of origami dealing with models designed to move, is a previously unexplored area for engineering design solutions that are deployable and have additional motion in the deployed state. A literature review of origami in engineering is performed, resulting in seven key areas of technical origami literature from a wide variety of disciplines. Spherical mechanisms are identified as the method by which most action origami models achieve complicated motion while remaining flat-foldable. The subset of action origami whose …


Fully Compliant Mechanisms For Bearing Subtraction In Robotics And Space Applications, Ezekiel G. Merriam Apr 2013

Fully Compliant Mechanisms For Bearing Subtraction In Robotics And Space Applications, Ezekiel G. Merriam

Theses and Dissertations

Robotics and space applications represent areas where compliant mechanisms can continue to make a significant impact by reducing costs and weight while improving performance. Because of the nature of these applications, a common need is for bearing replacement mechanisms, or mechanisms that perform the function of a bearing without the complexity and failure modes associated with bearings. Static balancing is a design strategy that attempts to reduce the actuation effort of a mechanism, and has been applied to compliant mechanisms in some applications. Monolithic construction, especially by means of 3D printing technology, is a strategy whereby the mechanism links and …


Introduction Of Planar Compliant Joints Designed For Combined Bending And Axial Loading Conditions In Lamina Emergent Mechanisms, Samuel E. Wilding, Larry L. Howell, Spencer P. Magleby Oct 2012

Introduction Of Planar Compliant Joints Designed For Combined Bending And Axial Loading Conditions In Lamina Emergent Mechanisms, Samuel E. Wilding, Larry L. Howell, Spencer P. Magleby

Faculty Publications

This work introduces three joints to allow motion in lamina emergent mechanisms (LEMs) that were designed to have minimal parasitic motion under tension, compression, and a combination of tension and compression loading. Closed-form models of the joints were developed and combined with optimization algorithms for maximum flexibility in bending and then modeled using finite element analysis (FEA). The FEA results were used to predict the stiffness of the joints in bending, tension, and compression. As a baseline, lamina emergent torsional (LET) joints were designed to match the bending stiffness of each of the joints, so that the tensile-compressive performance could …


Investigation Of Compliant Space Mechanisms With Application To The Design Of A Large-Displacement Monolithic Compliant Rotational Hinge, Robert Mcintyre Fowler Jun 2012

Investigation Of Compliant Space Mechanisms With Application To The Design Of A Large-Displacement Monolithic Compliant Rotational Hinge, Robert Mcintyre Fowler

Theses and Dissertations

The purpose of this research is to investigate the use of compliant mechanisms in space applications and design, analyze, and test a compliant space mechanism. Current space mechanisms are already highly refined and it is unclear if significant improvements in performance can be made by continuing to refine current designs. Compliant mechanisms offer a promising opportunity to change the fundamental approach to achieving controlled motion in space systems and have potential for dramatic increases in mechanism performance given the constraints of the space environment. A compliant deployment hinge was selected for development after industry input was gathered. Concepts for large-displacement …


Mechanical Properties And Mems Applications Of Carbon-Infiltrated Carbon Nanotube Forests, Walter C. Fazio May 2012

Mechanical Properties And Mems Applications Of Carbon-Infiltrated Carbon Nanotube Forests, Walter C. Fazio

Theses and Dissertations

This work explores the use of carbon-infiltrated carbon nanotube (CI-CNT) forests as a material for fabricating compliant MEMS devices. The impacts of iron catalyst layer thickness and carbon infiltration time are examined. An iron layer of 7nm or 10nm with an infiltration time of 30 minutes produces CI-CNT best suited for compliant applications. Average maximum strains of 2% and 2.48% were observed for these parameters. The corresponding elastic moduli were 5.4 GPa and 4.1 GPa, respectively. A direct comparison of similar geometry suggested CI-CNT is 80% more flexible than single-crystal silicon. A torsional testing procedure provided an initial shear modulus …


Toward The Design Of A Statically Balanced Fully Compliant Joint For Use In Haptic Interfaces, Levi Clifford Leishman Sep 2011

Toward The Design Of A Statically Balanced Fully Compliant Joint For Use In Haptic Interfaces, Levi Clifford Leishman

Theses and Dissertations

Haptic interfaces are robotic force-feedback devices that give the user a sense of touch as they interact with virtual or remote environments. These interfaces act as input devices, mapping the 3-dimensional (3D) motions of the user's hand into 3D motions in a slave system or simulated virtual world. A major challenge in haptic interfaces is ensuring that the user's experience is a realistic depiction of the simulated environment. This requires the interface's design to be such that it does not hinder the user's ability to feel the forces present in the environment. This "transparency" is achieved by minimizing the device's …


Expanding Lamina Emergent Mechanism (Lem) Capabilities: Spherical Lems, Lem Joints, And Lem Applications, Samuel E. Wilding Aug 2011

Expanding Lamina Emergent Mechanism (Lem) Capabilities: Spherical Lems, Lem Joints, And Lem Applications, Samuel E. Wilding

Theses and Dissertations

Lamina Emergent Mechanisms (LEMs) are a class of compliant mechanisms that can be manufactured from sheet goods and possess motion out of the plane of fabrication. LEMs can be designed to perform sophisticated motions. This thesis expands LEM understanding and increases the ability to utilize them in applications by introducing the fundamentals of spherical LEMs, creating joints suitable for LEMs, and providing an example of a LEM application. In this thesis, the fundamentals of spherical LEMs are developed. This includes classification of all possible spherical 4R LEMs and a discussion of the motion characteristics of the various mechanisms. The motion …


Identifying Potential Applications For Lamina Emergent Mechanisms And Evaluating Their Suitability For Credit-Card-Sized Products, Nathan Bryce Albrechtsen Dec 2010

Identifying Potential Applications For Lamina Emergent Mechanisms And Evaluating Their Suitability For Credit-Card-Sized Products, Nathan Bryce Albrechtsen

Theses and Dissertations

Lamina emergent mechanisms (LEMs) are a maturing technology that is prepared for commercial implementation into new products. LEMs are defined by three functional characteristics; they (1) are compliant, (2) are fabricated from planar materials, and (3) emerge from a flat initial state. Advantages, design challenges, and design tools are described for each of the functional characteristics. Opportunities for LEMs are discussed, namely disposable LEMs, novel arrays of LEMs, scaled LEMs, LEMs with surprising motion, shock absorbing LEMs, and deployable LEMs. Technology push product development processes were employed to select applications for LEMs. LEM technology was characterized. In a LEM workshop, …


Modeling, Design, And Testing Of Contact-Aided Compliant Mechanisms In Spinal Arthroplasty, Peter Andrew Halverson Jul 2010

Modeling, Design, And Testing Of Contact-Aided Compliant Mechanisms In Spinal Arthroplasty, Peter Andrew Halverson

Theses and Dissertations

Injury, instrumentation, or surgery may change the functional biomechanics of the spine. Spinal fusion, the current surgical treatment of choice, stabilizes the spine by rigid fixation, reducing spinal mobility at the cost of increased stress at adjacent levels. Recently, alternatives to spinal fusion have been investigated. One such alternative is total disc replacements. The current generation of total disc replacements (TDRs) focuses on restoring the quantity of motion. Recent studies indicate that the moment-rotation response and axis of rotation, or quality of motion (QOM), may have important implications in the health of adjacent segments as well as the health of …