Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Materials Science and Engineering

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 14006

Full-Text Articles in Engineering

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


Atom Probe Tomography Of Segregation At Grain Boundaries And Gas Bubbles In Neutron Irradiated U-10 Wt% Mo Fuel, Maalavan Arivu, Andrew Hoffman, Mukesh Bachhav, Assel Aitkaliyeva, Yaqiao Wu, Brandon Miller, Dennis Keiser, Jian Gan, Haiming Wen Jun 2024

Atom Probe Tomography Of Segregation At Grain Boundaries And Gas Bubbles In Neutron Irradiated U-10 Wt% Mo Fuel, Maalavan Arivu, Andrew Hoffman, Mukesh Bachhav, Assel Aitkaliyeva, Yaqiao Wu, Brandon Miller, Dennis Keiser, Jian Gan, Haiming Wen

Materials Science and Engineering Faculty Research & Creative Works

During Neutron Irradiation to Fission Densities > 5.2 X 1021 Fiss/cm3, Xe Agglomerates Forming Gas Bubbles of Varying Size within the U-Mo Fuel Matrix. Herein, Segregation of Fission Products to Xe Bubbles and Grain Boundaries (GB) Were Studied using Atom Probe Tomography (APT). Segregation Behavior Was Found to Vary among GBs, Small Bubbles (<10 >Nm), and Larger Bubbles (>10 Nm). Solid Fission Products Were Enriched at GBs and Larger Bubbles, But Not at Small Bubbles. a Denuded Zone Was Identified Adjacent to a > 10 Nm Xe Gas Bubble and a GB.


The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough May 2024

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough

Mechanical Engineering Undergraduate Honors Theses

Mechanical Exfoliation of Graphene is an often-overlooked portion of the fabrication of quantum devices, and to create more devices quickly, optimizing this process to generate better flakes is critical. In addition, it would be valuable to simulate test pulls quickly, to gain insight on flake quality of various materials and exfoliation conditions. Physical pulls of graphene at various temperatures, pull forces, and pull repetitions were analyzed and compared to the results of ANSYS simulations, solved for similar results. Using ANSYS’ ability to predict trends in exfoliations, flake thickness and coverage using stress and deflection analyses were investigated. Generally, both strongly …


Quasi-Static And Dynamic Deformation Of Aluminum Matrix Composites Reinforced By Core-Shell Al35ti15cu10mn20cr20 High-Entropy Alloy Particulates, Dezhi Zhu, Tingting Chen, Xiaoqiang Jin, Haiming Wen, Zhiqiang Fu, Shengguan Qu May 2024

Quasi-Static And Dynamic Deformation Of Aluminum Matrix Composites Reinforced By Core-Shell Al35ti15cu10mn20cr20 High-Entropy Alloy Particulates, Dezhi Zhu, Tingting Chen, Xiaoqiang Jin, Haiming Wen, Zhiqiang Fu, Shengguan Qu

Materials Science and Engineering Faculty Research & Creative Works

Core-Shell Structured Particles Are Potential Reinforcement Agents For Metal Matrix Composites. In This Work, Aluminum Matrix Composites Reinforced With Core-Shell Structured Al35Ti15Cu10Mn20Cr20 High-Entropy Alloy (HEA) Particles Were Fabricated By Spark Plasma Sintering (SPS) And High-Temperature Diffusion Post-Treatment. Dynamic Compression Behavior And Adiabatic Shear Failure Mechanism In The Composites Were Investigated By Split Hopkinson Pressure Bar (SHPB), Scanning Electron Microscopy And Transmission Electron Microscopy. Results Showed That The Shell Thickness Of The Core-Shell Particles Ranged From 0.4 To 1.6 Μm, Which Were Formed By Thermal Diffusion Between HEA Core And Aluminum Alloy. The 30 Vol% (Al35Ti15Cu10Mn20Cr20)p/2024Al Composite Showed A High Compressive …


High Temperature Validation Of A Line Heat Source Technique For In-Pile Thermal Conductivity Determination, Katelyn Wada, Allyssa Bateman, Tony Valayil Varghese, Austin Fleming, Brian J. Jaques, David Estrada May 2024

High Temperature Validation Of A Line Heat Source Technique For In-Pile Thermal Conductivity Determination, Katelyn Wada, Allyssa Bateman, Tony Valayil Varghese, Austin Fleming, Brian J. Jaques, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

In-pile instrumentation is critical for advancing operations and materials discovery in the nuclear industry. Ensuring optimal performance of sensors in high temperatures is the first step in demonstrating their viability in the harsh in-pile environment. This work demonstrates the high temperature capabilities of a line heat source and measurement technique previously shown to extract thermal conductivity of nuclear fuel sized samples within a laboratory environment at room temperature. This method uses a hybrid AC/DC measurement technique to obtain rapid measurements of the temperature dependent voltage change of a heater wire, which also acts as a resistance thermometer. Once the temperature …


Processing And Testing Commodity And Engineering Cfrtp Composites, Delia M. Derner, Kristine Osorio Apr 2024

Processing And Testing Commodity And Engineering Cfrtp Composites, Delia M. Derner, Kristine Osorio

Research & Creative Achievement Day

Commodity thermoplastic polymers provide good load transfer to and protection of the reinforcing fibers.  However, their mechanical properties are inferior to high-performance thermoplastic polymer composites.  Findings of preliminary research conducted at WSU showed that continuous fiber reinforced (CFR) commodity polymers such as PETG and PP have better Izod impact resistance than their high-performance CFR counterparts.  Further investigation of these findings is conducted in this research project.  Quasi-isotropic laminates of GF/PETG and GF/PET-am are fabricated and tested in drop weight impact.  The results will be compared with previously determined results of high-performance CF/PPS, CF/PA12 and GF/PPS.  The samples are fabricated using …


Low-Velocity Drop Weight Impact And Compression After Impact Properties Of Symmetric Quasi-Isotropic Cfrtp Composites, Youyi Zhou, Kyungbin Min Apr 2024

Low-Velocity Drop Weight Impact And Compression After Impact Properties Of Symmetric Quasi-Isotropic Cfrtp Composites, Youyi Zhou, Kyungbin Min

Research & Creative Achievement Day

Low-velocity impact properties and residual compression strength after impact performance are used to evaluate composite materials for many applications. In this research, low-velocity drop-weight impact and compression after impact performance of four continuous fiber reinforcement thermoplastic (CFRTP) composites are investigated. Quasi-isotropic samples of GF/PP, CF-PA12, CF-PA6, GF-PA6 were fabricated and tested according to ASTM standards. Three energy levels of 10, 15, and 20 J/mm, were employed in this research. Results indicate that GF/PP exhibits the highest damage resistance and rebound-ability, evidenced by its minimal indentation and damage area, the highest significant damage threshold force, and the highest ratio of impact …


Ergo Carbon Workspace, Ethan C. Atkinson, Joshua N. Hanner, Rachel A. Henderson, Anders Nielsen, Mohamed A. Salat Apr 2024

Ergo Carbon Workspace, Ethan C. Atkinson, Joshua N. Hanner, Rachel A. Henderson, Anders Nielsen, Mohamed A. Salat

Research & Creative Achievement Day

The goal of the Ergo Carbon Workspace is to create a monitor stand that is both lightweight and easily transportable, catering to the needs of modern workspaces. Constructed from carbon fiber, epoxy resin, and a honeycomb core, this design emphasizes portability without sacrificing durability. Incorporating aerospace-grade honeycomb core as well as braided carbon fiber epoxy struts bolsters structural integrity while maintaining a lightweight part. The Ergo Carbon Workspace design facilitates effortless assembly and disassembly, simplifying transportation and packaging. Through the utilization of composite materials, the stand achieves an optimal balance of strength and portability. Ergo Carbon Workspace will also incorporate …


Application Of The Immobilized Low-Activity Waste Glass Corrosion Model To The Static Dissolution Of 24 Statistically-Designed Alkali-Borosilicate Waste Glasses, Sebastien N. Kerisit, James J. Neeway, Charmayne E. Lonergan, Benjamin Parruzot, Jarrod V. Crum, Richard C. Daniel, Gary L. Smith, R. Matthew Asmussen Apr 2024

Application Of The Immobilized Low-Activity Waste Glass Corrosion Model To The Static Dissolution Of 24 Statistically-Designed Alkali-Borosilicate Waste Glasses, Sebastien N. Kerisit, James J. Neeway, Charmayne E. Lonergan, Benjamin Parruzot, Jarrod V. Crum, Richard C. Daniel, Gary L. Smith, R. Matthew Asmussen

Materials Science and Engineering Faculty Research & Creative Works

Glass corrosion models that capture the complex mechanisms of the glass-water reaction enable the prediction of nuclear waste glass durability in disposal scenarios. Parameterization of such models is challenging because of the need to capture changes in corrosion behavior with time, reaction conditions, and glass composition. Here, we describe and employ the ILAW (immobilized low-activity waste) glass corrosion model (IGCM) in geochemical simulations of static dissolution tests, at two temperatures (40 °C and 90 °C), for a matrix of 24 enhanced low-activity waste (eLAW) glasses statistically designed to cover a processable composition space defined by 8 major glass components (Al …


Decoding Crystallization Behavior Of Aluminoborosilicate Glasses: From Structural Descriptors To Quantitative Structure – Property Relationship (Qspr) Based Predictive Models, Yingcheng Zhang, Marco Bertani, Alfonso Pedone, Randall E. Youngman, Gregory Tricot, Aditya Kumar, Ashutosh Goel Apr 2024

Decoding Crystallization Behavior Of Aluminoborosilicate Glasses: From Structural Descriptors To Quantitative Structure – Property Relationship (Qspr) Based Predictive Models, Yingcheng Zhang, Marco Bertani, Alfonso Pedone, Randall E. Youngman, Gregory Tricot, Aditya Kumar, Ashutosh Goel

Materials Science and Engineering Faculty Research & Creative Works

Successful decoding of structural descriptors controlling the crystallization in multicomponent functional glasses can pave the way for the transition from the trial-and-error approach and empirical modeling for glass/glass-ceramic composition design toward more rational and scientifically rigorous Quantitative Structure-Property Relationship (QSPR) based models. However, due to the compositional and structural complexity of multicomponent glasses and the longer time and length scales associated with nucleation, the development and validation of QSPR models are still in it's infancy. The work presented in the article is an attempt to leap forward in this pursuit by combining the strengths of experimental and computational materials science …


Globular Protein For Surface Modification Of Cellulosecontaining Materials, Nodira Saydaliyeva Apr 2024

Globular Protein For Surface Modification Of Cellulosecontaining Materials, Nodira Saydaliyeva

Technical science and innovation

The purpose of this work is the chemical modification of cotton fabrics with natural globular protein. Modification was carried out in the process of finishing cotton fabrics, after decoction and bleaching in a continuous mode. The effect of modification on the strength, protein content and functional groups of cotton fabric has been studied. According to the results obtained using the AUTOGRAPH AGS-N machine, it was found that the modification of cotton fabrics with a solution of globular protein increases the strength of the treated fabrics, depending on the concentration of the modifier and the temperature regime. Treatment with a highly …


A Guide To Fifty Years Of Research At Montana Tech: Part 3-Decontamination Of Ratioactively Contaminated Steel By Melt Refining/Slagging Processing, Larry G. Twidwell, Samuel A. Worcester Apr 2024

A Guide To Fifty Years Of Research At Montana Tech: Part 3-Decontamination Of Ratioactively Contaminated Steel By Melt Refining/Slagging Processing, Larry G. Twidwell, Samuel A. Worcester

Metallurgy

This presentation includes a discussion of the research conducted at Montana Tech in the Department of Metallurgical and Materials Engineering. The discussion is focused on Decontamination of Radioactively Contaminated Steel by Melt Refining/Slagging. This presentation is based on the research of Master of Science graduate students, industrial and academic colleagues, at the Montana College of Mineral Science and Technology (which morphed to Montana Tech [1977], then to Montana Tech of The University of Montana [2000], then to Montana Technological University [2019]). The referenced work of each of the graduate students in this presentation is gratefully acknowledged. The following summary presentation …


Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin Mar 2024

Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin

Journal of Electrochemistry

Ammonia (NH3) is an essential chemical in modern society. It is currently produced in industry by the Haber-Bosch process using H2 and N2 as reactants in the presence of iron-based catalysts at high-temperature (400–600 oC) and extremely highpressure (20–40 MPa) conditions. However, its efficiency is limited to 10% to 15%. At the same time, a large amount of energy is consumed, and CO2 emission is inevitably. The development of a sustainable, clean, and environmentally friendly energy system represents a key strategy to address energy crisis and environmental pollution, ultimately aiming to achieve carbon neutrality. …


Advancements In Characterization Of Ancient Potteries From Southeast Asia: A Review Of Analytical Techniques, Chitnarong Sirisathitkul Mar 2024

Advancements In Characterization Of Ancient Potteries From Southeast Asia: A Review Of Analytical Techniques, Chitnarong Sirisathitkul

Makara Journal of Science

Ancient potteries offer valuable information regarding technological advancements, life dynamics, cultural diversity, and trade routes in the past. Earthenware, stoneware, and porcelain from Southeast Asia have been characterized using several analytical techniques, as reviewed in this article. Fluorescent and diffracted X-rays give rise to elemental and phase compositions, respectively. Examination of molecular bonds requires vibrational spectroscopy, which is useful for the identification of organic materials in ancient potteries. With the advent of portable X-ray fluorescence and Raman spectrometry, on-site analysis of archeological ceramics is now possible. For in-depth analysis, synchrotron light sources can provide new insights into artifacts through X-ray …


Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler Mar 2024

Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler

Faculty Publications

Ferroelectricity in hafnium zirconium oxide (Hf1−xZrxO2) and the factors that impact it have been a popular research topic since its discovery in 2011. Although the general trends are known, the interactions between fabrication parameters and their effect on the ferroelectricity of Hf1−xZrxO2 require further investigation. In this paper, we present a statistical study and a model that relates Zr concentration (x), film thickness (tf), and annealing temperature (Ta) with the remanent polarization (Pr) in tungsten (W)-capped Hf1−xZrxO2. …


Micropatterning And Functionalization Of Single Layer Graphene: Tuning Its Electron Transport Properties, Miao-Miao Cui, Lian-Huan Han, Lan-Ping Zeng, Jia-Yao Guo, Wei-Ying Song, Chuan Liu, Yuan-Fei Wu, Shi-Yi Luo, Yun-Hua Liu, Dong-Ping Zhan Mar 2024

Micropatterning And Functionalization Of Single Layer Graphene: Tuning Its Electron Transport Properties, Miao-Miao Cui, Lian-Huan Han, Lan-Ping Zeng, Jia-Yao Guo, Wei-Ying Song, Chuan Liu, Yuan-Fei Wu, Shi-Yi Luo, Yun-Hua Liu, Dong-Ping Zhan

Journal of Electrochemistry

As a promising 2D material, graphene exhibits excellent physical properties including single-atom-scale thickness and remarkably high charge carrier mobility. However, its semi-metallic nature with a zero bandgap poses challenges for its application in high-performance field-effect transistors (FETs). In order to overcome these limitations, various approaches have been explored to modulate graphene's bandgap, including nanoscale confinement, external field induction, doping, and chemical micropatterning. Nevertheless, the stability and controllability still need to be improved. In this study, we propose a feasible method that combines electrochemical bromination and photolithography to precisely tune the electron transport properties of single layer graphene (SLG). Through this …


Effects Of Polymer-Nanoparticle Interactions On The Dynamics Of Attractive Polyhedral Oligomeric Silsesquioxane Nanocomposites, Walter W. Young Mar 2024

Effects Of Polymer-Nanoparticle Interactions On The Dynamics Of Attractive Polyhedral Oligomeric Silsesquioxane Nanocomposites, Walter W. Young

Doctoral Dissertations

Polyhedral oligomeric silsesquioxane (POSS) had long been recognized as a critical building block for inorganic-organic hybrid materials with unique and desirable properties and performance. Through synthesis and characterization of polymer/POSS nanocomposites, direct insights into the significant effects of the polymer/POSS interactions on the resulting material properties are obtained. Random copolymers of a hydrogen-bond accepting monomer and a non-interacting monomer are synthesized and loaded with a model amine-functionalized hydrogen bond donating POSS molecule via solution casting, to create a material with well-controlled dynamical heterogeneity. The increase in the glass transition temperature (Tg) of these materials is found to strongly depend on …


La1-Xsrxcoo3 Perovskite Nanomaterial: Synthesis, Characterization, And Its Biomedical Application, Adhira Tippur, Anyet Shohag, Luke Franco, Ahmed Touhami, Swati Mohan, Mohammed Uddin Mar 2024

La1-Xsrxcoo3 Perovskite Nanomaterial: Synthesis, Characterization, And Its Biomedical Application, Adhira Tippur, Anyet Shohag, Luke Franco, Ahmed Touhami, Swati Mohan, Mohammed Uddin

Research Symposium

Early cancer detection is paramount for effective treatment and potential cures. This research explores the application of perovskite materials, specifically Sr2+-doped Lanthanum Cobaltite (La1-xSrxCoO3) nanomaterials, in cancer detection, with a focus on rats as an experimental model. The ferroelectric nature of these materials, synthesized through a combination of sol-gel and molten-salt processes, was examined at varying Sr2+ doping levels (1-20 wt%). Rigorous characterization, employing X-ray diffraction and scanning electron microscopy, confirmed the uniform morphology of nano cubes, laying the foundation for subsequent investigations. The magnetic properties of the perovskite nanoparticles were probed, suggesting their potential as a diagnostic tool for …


On The Use Of Machine Learning And Data-Transformation Methods To Predict Hydration Kinetics And Strength Of Alkali-Activated Mine Tailings-Based Binders, Sahil Surehali, Taihao Han, Jie Huang, Aditya Kumar, Narayanan Neithalath Mar 2024

On The Use Of Machine Learning And Data-Transformation Methods To Predict Hydration Kinetics And Strength Of Alkali-Activated Mine Tailings-Based Binders, Sahil Surehali, Taihao Han, Jie Huang, Aditya Kumar, Narayanan Neithalath

Electrical and Computer Engineering Faculty Research & Creative Works

The escalating production of mine tailings (MT), a byproduct of the mining industry, constitutes significant environmental and health hazards, thereby requiring a cost-effective and sustainable solution for its disposal or reuse. This study proposes the use of MT as the primary ingredient (≥70%mass) in binders for construction applications, thereby ensuring their efficient upcycling as well as drastic reduction of environmental impacts associated with the use of ordinary Portland cement (OPC). The early-age hydration kinetics and compressive strength of MT-based binders are evaluated with an emphasis on elucidating the influence of alkali activation parameters and the amount of slag or cement …


Effect Of The Filler Morphology On The Crystallization Behavior And Dielectric Properties Of The Polyvinylidene Fluoride-Based Composite, Suzana Filipović, Nina Obradović, Cole Corlett, William G. Fahrenholtz, Martin Rosenschon, Ekkehard Füglein, Radovan Dojčilović, Dragana Tošić, Jovana Petrović, Antonije Đorđević, Branislav Vlahović, Vladimir B. Pavlović Mar 2024

Effect Of The Filler Morphology On The Crystallization Behavior And Dielectric Properties Of The Polyvinylidene Fluoride-Based Composite, Suzana Filipović, Nina Obradović, Cole Corlett, William G. Fahrenholtz, Martin Rosenschon, Ekkehard Füglein, Radovan Dojčilović, Dragana Tošić, Jovana Petrović, Antonije Đorđević, Branislav Vlahović, Vladimir B. Pavlović

Materials Science and Engineering Faculty Research & Creative Works

Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt.% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was …


A Phenomenological Thermodynamic Energy Density Function For Ferroelectric Wurtzite Al1−Xscxn Single Crystals, Yijia Gu, Andrew C. Meng, Aiden Ross, Long Qing Chen Mar 2024

A Phenomenological Thermodynamic Energy Density Function For Ferroelectric Wurtzite Al1−Xscxn Single Crystals, Yijia Gu, Andrew C. Meng, Aiden Ross, Long Qing Chen

Materials Science and Engineering Faculty Research & Creative Works

A Landau-Devonshire thermodynamic energy density function for ferroelectric wurtzite aluminum scandium nitride (Al1−xScxN) solid solution is developed. It is parametrized using available experimental and theoretical data, enabling the accurate reproduction of composition-dependent ferroelectric properties, such as spontaneous polarization, dielectric permittivity, and piezoelectric constants, for both bulk and thin films. The maximum concentration of Sc for the wurtzite structure to remain ferroelectric is found to be 61 at. %. A detailed analysis of Al1−xScxN thin films reveals that the ferroelectric phase transition and properties are insensitive to substrate strain. This study lays the foundation for quantitative modeling of novel ferroelectric wurtzite …


Raman Spectroscopy Of Gan On Si With Varied Thin Film Thickness For High-Temperature Semiconductor Devices, Manika Tun Nafisa Mar 2024

Raman Spectroscopy Of Gan On Si With Varied Thin Film Thickness For High-Temperature Semiconductor Devices, Manika Tun Nafisa

Symposium of Student Scholars

This study explores the potential of GaN on Si thin films as a promising material for high-temperature semiconductor devices, owing to its impressive thermal properties and performance characteristics. Two GaN on Si samples were grown using Metal Organic Chemical Vapor Deposition (MOCVD), with different film thicknesses, and their potential for high-temperature applications was comprehensively assessed by performing Raman spectroscopy at various temperature levels. The experimental results provided valuable insights into the material's behavior at elevated temperatures. At 300°C, the GaN E2 (High) peak showed a Raman shift at 562.38 cm⁻¹ for high-thickness samples and 561.49 cm⁻¹ for low-thickness samples. …


Toward Smart And Sustainable Cement Manufacturing Process: Analysis And Optimization Of Cement Clinker Quality Using Thermodynamic And Data-Informed Approaches, Jardel P. Gonçalves, Taihao Han, Gaurav Sant, Narayanan Neithalath, Jie Huang, Aditya Kumar Mar 2024

Toward Smart And Sustainable Cement Manufacturing Process: Analysis And Optimization Of Cement Clinker Quality Using Thermodynamic And Data-Informed Approaches, Jardel P. Gonçalves, Taihao Han, Gaurav Sant, Narayanan Neithalath, Jie Huang, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Cement manufacturing is widely recognized for its harmful impacts on the natural environment. In recent years, efforts have been made to improve the sustainability of cement manufacturing through the use of renewable energy, the capture of CO2 emissions, and partial replacement of cement with supplementary cementitious materials. To further enhance sustainability, optimizing the cement manufacturing process is essential. This can be achieved through the prediction and optimization of clinker phases in relation to chemical compositions of raw materials and manufacturing conditions. Cement clinkers are produced by heating raw materials in kilns, where both raw material compositions and processing conditions …


A Priori Procedure To Establish Spinodal Decomposition In Alloys, Simon Divilov, Hagen Eckert, Cormac Toher, Rico Friedrich, Adam C. Zettel, Donald W. Brenner, William G. Fahrenholtz, Douglas E. Wolfe, Eva Zurek, Jon Paul Maria, Nico Hotz, Xiomara Campilongo, Stefano Curtarolo Mar 2024

A Priori Procedure To Establish Spinodal Decomposition In Alloys, Simon Divilov, Hagen Eckert, Cormac Toher, Rico Friedrich, Adam C. Zettel, Donald W. Brenner, William G. Fahrenholtz, Douglas E. Wolfe, Eva Zurek, Jon Paul Maria, Nico Hotz, Xiomara Campilongo, Stefano Curtarolo

Materials Science and Engineering Faculty Research & Creative Works

Spinodal decomposition can improve a number of essential properties in materials, especially hardness. Yet, the theoretical prediction of the onset of this phenomenon (e.g., temperature) and its microstructure (e.g., wavelength) often requires input parameters coming from costly and time-consuming experimental efforts, hindering rational materials optimization. Here, we present a procedure where such parameters are not derived from experiments. First, we calculate the spinodal temperature by modeling nucleation in the solid solution while approaching the spinode boundary. Then, we compute the spinodal wavelength self-consistently using a few reasonable approximations. Our results show remarkable agreement with experiments and, for NiRh, the calculated …


The Thermophysical Properties Of Tco2, Hong Zhong, Jason Lonergan, John S. Mccloy, Scott P. Beckman Mar 2024

The Thermophysical Properties Of Tco2, Hong Zhong, Jason Lonergan, John S. Mccloy, Scott P. Beckman

Materials Science and Engineering Faculty Research & Creative Works

Technetium-99 Is A Highly Radioactive Isotope With A Long Half-Life That Is Common In Nuclear Waste. It Volatizes At A Low Temperature, Which Poses A Significant Challenge To The Clean-Up And Containment Processes. Due To Difficulties In Purifying Technetium Compounds, Their Thermophysical Properties Have Not Been Measured Or Calculated. Here, First Principle Methods Are Used Along With The Quasi Quasi-Harmonic Harmonic Approximation To Compute The Debye Temperature, Volumetric Thermal Expansion Coefficient, Bulk Modulus, And Heat Capacity Of Rutile TcO2 For Temperatures Ranging From 0 To 1500 K And Applied Pressures Ranging From 0 To 255 GPa. The Computed Atomic Structures …


Corrigendum To "Comparing Structure-Property Evolution For Pm-Hip And Forged Alloy 625 Irradiated With Neutrons To 1dpa" [Mater. Sci. Eng. A (2022) 144058], Caleb Clement, Sowmya Panuganti, Patrick H. Warren, Yangyang Zhao, Yu Lu, Katelyn Wheeler, David Frazer, Donna P. Guillen, David W. Gandy, Janelle P. Wharry Mar 2024

Corrigendum To "Comparing Structure-Property Evolution For Pm-Hip And Forged Alloy 625 Irradiated With Neutrons To 1dpa" [Mater. Sci. Eng. A (2022) 144058], Caleb Clement, Sowmya Panuganti, Patrick H. Warren, Yangyang Zhao, Yu Lu, Katelyn Wheeler, David Frazer, Donna P. Guillen, David W. Gandy, Janelle P. Wharry

Materials Science and Engineering Faculty Publications and Presentations

The authors regret that after publication, they discovered that the dislocation loop number density was undercounted by a factor of 100 for both the PM-HIP and forged specimens. While this does not change the original major conclusions, this necessitates a change in the results presentation (Sections 3.2 and 4.1) and calculated hardening (Table 3, Fig. 5). Corrections to these affected sections are provided in this corrigendum.


A Bayesian Approach For Lifetime Modeling And Prediction With Multi-Type Group-Shared Missing Covariates, Hao Zeng, Xuxue Sun, Kuo Wang, Yuxin Wen, Wujun Si, Mingyang Li Feb 2024

A Bayesian Approach For Lifetime Modeling And Prediction With Multi-Type Group-Shared Missing Covariates, Hao Zeng, Xuxue Sun, Kuo Wang, Yuxin Wen, Wujun Si, Mingyang Li

Engineering Faculty Articles and Research

In the field of reliability engineering, covariate information shared among product units within a specific group (e.g., a manufacturing batch, an operating region), such as operating conditions and design settings, exerts substantial influence on product lifetime prediction. The covariates shared within each group may be missing due to sensing limitations and data privacy issues. The missing covariates shared within the same group commonly encompass a variety of attribute types, such as discrete types, continuous types, or mixed types. Existing studies have mainly considered single-type missing covariates at the individual level, and they have failed to thoroughly investigate the influence of …


Assessing Adoption Barriers Of Sustainable Packaging In Egypt, Carol Ramses Morgan Feb 2024

Assessing Adoption Barriers Of Sustainable Packaging In Egypt, Carol Ramses Morgan

Theses and Dissertations

Sustainable packaging has become an essential part of business decisions and corporate directions. With the rise of environmental damages due to improper waste management and unsustainable practices, businesses have a major responsibility to analyze their products’ life cycles and redesign them with sustainability in mind. Applying sustainable packaging could save companies large amounts of resources, therefore cutting costs, while also achieving the legal and social duty as a corporation towards society and the environment. Many developing countries, with specific focus on Egypt, have recently focused on legislative and corporate decisions in order to encourage more sustainable practices. Egypt’s new Waste …


Applicability Of Using Bio-Receptive Concrete For Building Facades In Egypt, Gina Roupheil Feb 2024

Applicability Of Using Bio-Receptive Concrete For Building Facades In Egypt, Gina Roupheil

Theses and Dissertations

The significant increase in carbon dioxide emissions caused by the construction industry is detrimental to our planet. This is rapidly increasing with the urbanization of cities that is gradually taking its toll on the available green spaces, which help in balancing such emissions. Recently, researchers have been trying to make use of bio-receptivity to create biomaterial systems that could be spread on building envelopes and support the growth of small plant species and microorganisms to establish on. Out of those materials, comes the concrete as a promising material for bio-colonization.

Within this context, this study aims at investigating the applicability …


Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang Feb 2024

Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang

Journal of Electrochemistry

In recent years, joint time-frequency analysis has once again become a research hotspot. Supercapacitors have high power density and long service life, however, in order to balance between power density and energy density, two key factors need to be considered: (i) the specific surface area of the porous matrix; (ii) the electrolyte accessibility to the intra-pore space of porous carbon matrix. Electrochemical impedance spectra are extensively used to investigate charge penetration ratio and charge storage mechanism in the porous electrode for capacitance energy storage. Furthermore, similar results could be obtained by different methods such as stable-state analysis in the frequency …