Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

The Search For Design In Electrical Engineering Education, David Kerns, Sherra Kerns, Mark Somerville, Gill Pratt, Jill Crisman Jul 2012

The Search For Design In Electrical Engineering Education, David Kerns, Sherra Kerns, Mark Somerville, Gill Pratt, Jill Crisman

Mark Somerville

The importance of "design" in engineering education is well established and a cornerstone of most new engineering curricula as well as accreditation criteria Electrical and computer engineering (ECE) programs view many elements of design in ways similar to other engineering disciplines. However, in some respects other disciplines within engineering, such as Mechanical Engineering (ME), view design in broader terms, and perhaps gain value that electrical and computer engineering educators may miss. This paper describes how design is typically viewed in ECE programs, bow it's viewed in other engineering areas, particularly ME, and suggests some new possibilities for enhancing design education …


Adaptive Circuits Using Pfet Floating-Gate Devices, Paul Hasler, Bradley Minch, Chris Diorio Jul 2012

Adaptive Circuits Using Pfet Floating-Gate Devices, Paul Hasler, Bradley Minch, Chris Diorio

Bradley Minch

In this paper, we describe our floating-gate pFET device, with its many circuit applications and supporting experimental measurements. We developed these devices in standard double-poly CMOS technologies by utilizing many effects inherent in these processes. We add floating-gate charge by electron tunneling, and we remove floating-gate charge by hot-electron injection. With this floating-gate technology, we cannot only build analog EEPROMs, we can also implement adaptation and learning when we consider floating-gate devices to be circuit elements with important time-domain dynamics. We start by discussing non-adaptive properties of floating-gate devices and we present two representative non-adaptive applications. First, we discuss using …


Adaptive Translinear Analog Signal Processing: A Prospectus, Eric Mcdonald, Kofi Odame, Bradley Minch Jul 2012

Adaptive Translinear Analog Signal Processing: A Prospectus, Eric Mcdonald, Kofi Odame, Bradley Minch

Bradley Minch

We have devised a systematic method of transforming high-level time-domain descriptions of linear and nonlinear adaptive signal-processing algorithms into compact, continuous-time analog circuitry using basic units called multiple-input translinear elements (MITEs). In this paper, we describe the current state of the art and illustrate the method with an example of an analog phase-locked loop (PLL).


Inverting The Bipolar Differential Pair For Low-Voltage Applications, Bradley Minch Jul 2012

Inverting The Bipolar Differential Pair For Low-Voltage Applications, Bradley Minch

Bradley Minch

In this paper, the author presents a new bipolar differential transconductor that functions just like an emitter-degenerated differential pair, except for the following: it operates on a low power supply; it has a rail-to-rail common-mode input-voltage range; permits a wide output-voltage swing; has a transconductance gain that is nearly constant with the common-mode input voltage; and requires only n-p-n transistors in the signal path. We describe intuitively how the circuit functions and provide DC measurements from a prototype circuit, breadboarded from a quad TPQ3904 and a thick-film resistor array demonstrating proper operation on a single-ended 1.2-V power supply.


Highly Linear, Wide-Dynamic-Range Multiple-Input Translinear Element Networks, Kofi Odame, Eric Mcdonald, Bradley Minch Jul 2012

Highly Linear, Wide-Dynamic-Range Multiple-Input Translinear Element Networks, Kofi Odame, Eric Mcdonald, Bradley Minch

Bradley Minch

In this paper, we propose a modification to the class of circuits known as multiple input translinear element (MITE) networks. Our proposed modification leads to a MITE network that is free from certain nonidealities encountered in previous implementations. Further, the new MITE network described here readily accommodates the use of bipolar junction transistors in the input and output stages, thus implying a significantly wider dynamic range than we can achieve using subthreshold MOSFETs.


A Folded Floating-Gate Differential Pair For Low-Voltage Applications, Bradley Minch Jul 2012

A Folded Floating-Gate Differential Pair For Low-Voltage Applications, Bradley Minch

Bradley Minch

The author presents a new folded differential pair topology that is suitable for low-voltage applications. The new differential pair is made from floating-gate MOS (FGMOS) transistors and simultaneously provides a rail-to-rail common-mode input voltage range with a high rejection of the common-mode input voltage by keeping the sum of the two output currents fixed. Moreover, when biased in weak or moderate inversion, the allowable output voltage swing is also almost from rail-to-rail. The author discusses the operation of the circuit and some of the trade-offs involved in its design. He also shows experimental measurements from a version of the circuit, …


A Transistor-Only Circuit Model Of The Autozeroing Floating-Gate Amplifier, Paul Hasler, Matt Kucic, Bradley Minch Jul 2012

A Transistor-Only Circuit Model Of The Autozeroing Floating-Gate Amplifier, Paul Hasler, Matt Kucic, Bradley Minch

Bradley Minch

We developed an transistor-only version of our autozeroing floating-gate amplifier (AFGA). We use a subthreshold transistor to model the behavior of an electron-tunneling device, and we use another subthreshold transistor to model the behavior of pFET hot-electron injection. We have derived analytical models that completely characterize the amplifier and that are in good agreement with experimental data. This circuit is a bandpass filter, and behaves similarly to the AFGA with different operating parameters. Both the low-frequency and high-frequency cutoffs are controlled electronically, as is done in continuous-time filters. This circuit has a low-frequency cutoff at frequencies above 1 Hz, and …


A Simple Way To Extend The Common-Mode Input-Voltage Range Of The Mos Differential Pair, Bradley Minch Jul 2012

A Simple Way To Extend The Common-Mode Input-Voltage Range Of The Mos Differential Pair, Bradley Minch

Bradley Minch

In this paper, we describe a simple technique involving indirect negative feedback that extends the useable common-mode input-voltage range of the MOS differential pair by a saturation voltage. In this method, we use a replica differential pair to sense when the bias transistor supplying the tail current falls out of saturation. We then set the bias voltage so that the sum of the two differential-pair output currents is equal to the bias current. We present experimental results from a version of the differential pair that was fabricated in a 0.5 μm CMOS process along with a comparison with an identical …


Low-Voltage Wilson Current Mirrors In Cmos, Bradley Minch Jul 2012

Low-Voltage Wilson Current Mirrors In Cmos, Bradley Minch

Bradley Minch

In this paper, we describe three simple low-voltage CMOS analogs of the Wilson current mirror that function well at all current levels, ranging from weak inversion to strong inversion. Each of these current mirrors can operate on a low power-supply voltage of a diode drop plus two saturation voltages and features a wide output-voltage swing with a cascode-type incremental output impedance. Two of the circuits requires an input voltage of a diode drop plus a saturation voltage while the third one features a low input voltage of a saturation voltage. We present experimental results from versions of these three current …


Evolution Of A Folded Floating-Gate Differential Pair, Bradley Minch Jul 2012

Evolution Of A Folded Floating-Gate Differential Pair, Bradley Minch

Bradley Minch

The author presents a folded floating-gate MOS (FGMOS) differential pair circuit that is capable of simultaneously providing a rail-to-rail common-mode input voltage range and a rail-to-rail output voltage swing with a low power-supply voltage. In this configuration, the voltage drop across the bias current source is folded up into the same range over which the output voltages swing, facilitating low-voltage operation. The floating-gate charge can be used to trim out the offset voltage of the differential pair and to reduce the required power-supply voltage for a given bias current level. The author provides both a qualitative description of how the …


Single-Event Charge Enhancement In Soi Devices, David Kerns, Sherra Kerns, L Massengill, M Alles Apr 2012

Single-Event Charge Enhancement In Soi Devices, David Kerns, Sherra Kerns, L Massengill, M Alles

Sherra E. Kerns

Studies are presented of single-particle ion effects in body-tied CMOS/silicon-on-insulator (SOI) devices. It is shown that two mechanisms can contribute to SOI soft-error rates: a direct ion-induced photocurrent and a local lateral bipolar current. The total amount of charge collected is sensitive to the relative locations of the ion strike and the body-to-source tie.


Single-Event Charge Enhancement In Soi Devices, David Kerns, Sherra Kerns, L Massengill, M Alles Apr 2012

Single-Event Charge Enhancement In Soi Devices, David Kerns, Sherra Kerns, L Massengill, M Alles

David V. Kerns

Studies are presented of single-particle ion effects in body-tied CMOS/silicon-on-insulator (SOI) devices. It is shown that two mechanisms can contribute to SOI soft-error rates: a direct ion-induced photocurrent and a local lateral bipolar current. The total amount of charge collected is sensitive to the relative locations of the ion strike and the body-to-source tie.