Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Benchmarking Of A Sco2 Heat Exchanger Flow Loop, David Velasco Apr 2024

Benchmarking Of A Sco2 Heat Exchanger Flow Loop, David Velasco

Doctoral Dissertations and Master's Theses

Heat transfer of supercritical carbon dioxide (sCO2) was studied experimentally by commissioning a sCO2 flow loop featuring a horizontal tube-in-tube counterflow heat exchanger with a circular cross section. The main objective was to establish experimental heat transfer research capabilities for sCO2 at Embry-Riddle Aeronautical University’s (ERAU) Thermal Science Lab. sCO2 experiences a drastic change in thermophysical properties near its critical point that results in unique heat transfer characteristics. The high pressures at which sCO2 exists make the large gradients in thermophysical and transport properties difficult to study, experimentally and numerically. However, understanding the heat transfer characteristics and thermophysical behavior of …


The Scaling Of Loss Pathways And Heat Transfer In Small Scale Internal Combustion Engines, Joseph K. Ausserer Sep 2016

The Scaling Of Loss Pathways And Heat Transfer In Small Scale Internal Combustion Engines, Joseph K. Ausserer

Theses and Dissertations

Prior literature indicates fuel conversion efficiency and normalized power deteriorate increasingly rapidly with decreasing displacement, but does not fully reveal the driving losses. The literature also suggested that increasing losses relax the required fuel anti-knock index (AKI), but offered conflicting conclusions on the performance impact. This comprehensive experimental study of three, 28 cm3 to 85 cm3 displacement, commercial-off-the-shelf (COTS), two-stroke ICEs identified short-circuiting as having the most deleterious impact on COTS engine performance in this size range. Heat transfer losses were comparable to larger engines for displaced volumes greater than 10 cm3. An engine friction model was developed that uses …


Assessment Of Critical Technologies For Gas Turbine Engines Using Numerical Tools, Vinicius Pessoa Mapelli, Guillermo Paniagua, Jorge Sousa Aug 2015

Assessment Of Critical Technologies For Gas Turbine Engines Using Numerical Tools, Vinicius Pessoa Mapelli, Guillermo Paniagua, Jorge Sousa

The Summer Undergraduate Research Fellowship (SURF) Symposium

In 2014 gas turbine engine has reached a market value of 82.5 billion dollars, of which 59.5% are related to aircraft propulsion. The continuous market expansion attracts more and more the interest of researchers and industries towards the development of accurate numerical techniques to model thermodynamically the entire engine. This practice allows a performance and optimization analysis before the actual experimental testing, reducing the time and required investment in the design of a new engine. In this paper, a recently developed open source numerical tool named “Toolbox for the Modeling and Analysis of Thermodynamic Systems” (T-MATS) is used to assess …


A Comparative Study Of The Gas Turbine Simulation Program (Gsp) 11 And Gasturb 11 On Their Respective Simulations For A Single-Spool Turbojet, Rayne Sung Aug 2013

A Comparative Study Of The Gas Turbine Simulation Program (Gsp) 11 And Gasturb 11 On Their Respective Simulations For A Single-Spool Turbojet, Rayne Sung

Masters Theses

GasTurb 11 and the Gas Turbine Simulation Program (GSP) 11 are two commercially available gas turbine simulation programs used by industrial professionals and academic researchers throughout the world. The two programs use a pseudo-perfect gas assumption in their calculations, where the specific heat is taken as a function of temperature and gas composition but not pressure. This assumption allows the two programs to make more realistic calculations of gas turbine engine performance. This is in contrast to the ideal and perfect gas assumptions used in classroom calculations. In addition, GasTurb 11 and GSP 11 both utilize component maps, comprised from …


Characterization Of Pulse Detonation Engine Performance With Varying Free Stream Stagnation Pressure Levels, Wesley R. Knick Mar 2006

Characterization Of Pulse Detonation Engine Performance With Varying Free Stream Stagnation Pressure Levels, Wesley R. Knick

Theses and Dissertations

A pulse detonation engine operates on the principle that a fuel-air mixture injected into a tube will ignite and undergo a transition from a deflagration to a detonation and exit the tube at supersonic velocities. Studies in the field of combustion have shown that both ignition time and deflagration to detonation transition time can vary as a function of pressure. It can be hypothesized that if ignition and deflagration to detonation transition times can be reduced by increasing the free stream stagnation pressure level of the tube, it would then be possible to shorten the detonation tube length and increase …


Cycle Performance Of A Pulse Detonation Engine With Supercritical Fuel Injection, Timothy M. Helfrich Mar 2006

Cycle Performance Of A Pulse Detonation Engine With Supercritical Fuel Injection, Timothy M. Helfrich

Theses and Dissertations

Pulse detonation engines (PDE) rely on rapid ignition and formation of detonation waves. Because hydrocarbon fuels are composed typically of long carbon chains that must be reduced in the combustion process, it would be beneficial to create such reduction prior to injection of fuel into the engine. This study focused on PDE operation enhancements using dual detonation tube, concentric-counter-flow heat exchangers to elevate the fuel temperature up to supercritical temperatures. Variation of several operating parameters included fuel type (JP-8, JP-7, JP-10, RP-1, JP-900, and S-8), ignition delay, frequency, internal spiral length, and purge fraction. To quantify the performance, four key …