Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Engineering

Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon Dec 2023

Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon

All Dissertations

The development of composite materials for structural components necessitates methods for evaluating and characterizing their damage states after encountering loading conditions. Laminates fabricated from carbon fiber reinforced polymers (CFRPs) are lightweight alternatives to metallic plates; thus, their usage has increased in performance industries such as aerospace and automotive. Additive manufacturing (AM) has experienced a similar growth as composite material inclusion because of its advantages over traditional manufacturing methods. Fabrication with composite laminates and additive manufacturing, specifically fused filament fabrication (fused deposition modeling), requires material to be placed layer-by-layer. If adjacent plies/layers lose adhesion during fabrication or operational usage, the strength …


Bongoties Tying Machine Design, Zachary Stednitz, Tori Bornino, Jackson Mclaughlin, Shea Charkowsky Jun 2022

Bongoties Tying Machine Design, Zachary Stednitz, Tori Bornino, Jackson Mclaughlin, Shea Charkowsky

Mechanical Engineering

BongoTies are a reusable tool for cable management or general fastening, consisting of a strong rubber band attached to a bamboo pin. BongoTies is a company founded by our sponsor Tim Petros that sells its product on a variety of popular shopping sites, such as Amazon and eBay. Currently, the assembly process is to hand-tie the rubber band to the pin for every BongoTie. This is too slow to keep up with demand, requires a skilled worker with good dexterity, and can cause pain or injury if the rubber band snaps back onto the worker’s fingers. In this senior project …


Recycled Printer Filament, Charlotte Hyland, Troy D. Molinar Jan 2022

Recycled Printer Filament, Charlotte Hyland, Troy D. Molinar

Williams Honors College, Honors Research Projects

The purpose of this research is to examine the effects of recycling PLA filament for 3D printing on its material properties. After examining these effects, PLA and carbon fiber additives were mixed with recycled PLA pellets in different ratios to attempt to regain material properties lost in the recycling process. To complete these findings, an experiment was design and executed.

The research found that tensile strength during multiple iterations of recycling remained mostly unaffected, however, the strain degraded exponentially. In the PLA additive study, high ratios of PLA additive were able to increase the strength and strain properties of the …


Materials And Process Design For Ceramic Fused Filament Fabrication (Cf3) Of Hydroxyapatite., Kavish Sudan Dec 2021

Materials And Process Design For Ceramic Fused Filament Fabrication (Cf3) Of Hydroxyapatite., Kavish Sudan

Electronic Theses and Dissertations

Ceramic fused filament fabrication (CF3) enables the fabrication of highly customizable ceramic parts at relatively lower costs compared to other AM technologies. Advanced ceramics, having specific or niche applications, call for a high level of accuracy to meet the performance requirements. For achieving the desired level of accuracy in any manufacturing process, it is important to know the effect of involved parameters at different stages of fabrication. CF3 has been around for a while but there has been a severe lack of literature dealing with understanding the effect of process parameters on the final part properties. In this study, Hydroxyapatite …


Centrifugal Microfluidic Platform For Solid-Phase-Extraction (Spe) And Fluorescence Detection Applications, Yong Zhang Nov 2020

Centrifugal Microfluidic Platform For Solid-Phase-Extraction (Spe) And Fluorescence Detection Applications, Yong Zhang

LSU Doctoral Dissertations

Solid phase extraction (SPE) is a widely used method to separate and concentrate the target molecules in liquid mixture. Traditional SPE has to be conducted in the laboratory with professional equipment and skilled operators. The microfluidic and 3D printing technology have opened up the opportunity in developing miniaturized automatic instruments. The main contribution of this research is to integrate the SPE process on a novel centrifugal platform. Various valves are applied on the platform to help control the aqueous sample and reagents in the cartridge.

First, a centrifugal microfluidic platform was built for automatically detecting trace oil pollution in water. …


Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom Jun 2020

Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom

Mechanical Engineering

This document outlines the critical design details and timeline for the Design for Additive Manufacturing Senior Project sponsored by Solar Turbines, Inc. The scope of this project encompasses the redesign of two of Solar Turbine’s cast parts for metal additive manufacturing in order to minimize lead time, cost, and weight. With the overall objective of performing in-depth analysis exploring affordability & feasibility, this redesign process will aid Solar Turbines in expanding their knowledge of Design for Additive Manufacturing principles and enable them to further incorporate the use of additive manufacturing into their production processes. The first part that the team …


Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu Jan 2019

Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The objective of this study is to characterize the micromechanical properties of poly-L-lactic acid (PLLA) composites reinforced by grade 420 stainless steel (SS) particles with a specific focus on the interphase properties. The specimens were manufactured using 3D printing techniques due to its many benefits, including high accuracy, cost effectiveness and customized geometry. The adopted fused filament fabrication resulted in a thin interphase layer with an average thickness of 3 μm. The mechanical properties of each phase, as well as the interphase, were characterized by nanoindentation tests. The effect of matrix degradation, i.e., imperfect bonding, on the elastic modulus of …


3d Printing Of Hybrid Mos2-Graphene Aerogels As Highly Porous Electrode Materials For Sodium Ion Battery Anodes, Emery Brown, Pengli Yan, Halil Tekik, Ayyappan Elangovan, Jian Wang, Dong Lin, Jun Li Jan 2019

3d Printing Of Hybrid Mos2-Graphene Aerogels As Highly Porous Electrode Materials For Sodium Ion Battery Anodes, Emery Brown, Pengli Yan, Halil Tekik, Ayyappan Elangovan, Jian Wang, Dong Lin, Jun Li

Department of Mechanical and Materials Engineering: Faculty Publications

This study reports a 3D freeze-printing method that integrates inkjet printing and freeze casting to control both the microstructure and macroporosity via formation of ice microcrystals during printing. A viscous aqueous ink consisting of a molecular MoS2 precursor (ammonium thiomolybdate) mixed with graphene oxide (GO) nanosheets is used in the printing process. Post-treatments by freeze-drying and reductive thermal annealing convert the printed intermediate mixture into a hybrid structure consisting of MoS2 nanoparticles anchored on the surface of 2D rGO nanosheets in a macroporous framework, which is fully characterized with FESEM, TEM, XRD, Raman spectroscopy and TGA. The resulting …


Modeling And Validations Of Control Parameters For Material Extrusion-Based Additive Manufacturing Of Thixotropic Aluminum Alloys., Lars Herhold Aug 2018

Modeling And Validations Of Control Parameters For Material Extrusion-Based Additive Manufacturing Of Thixotropic Aluminum Alloys., Lars Herhold

Electronic Theses and Dissertations

Additive Manufacturing (AM) with metals has been accomplished mainly through powder bed fusion processes. Initial experiments and simulations using Material Extrusion Additive Manufacturing (MEAM) have been performed by various researchers especially using low melting alloys. Recently Stratasys Inc. submitted a patent application for the use of their Material Extrusion technology also called Fused Deposition Modeling (FDM) where they describe the process using thixotropic semi-solid alloys. Currently this process using semi-solid, engineering type alloys such as A356 or THIXALLOY 540 aluminum have not been researched to evaluate the control parameters. This research combines the in-depth knowledge of applying thixotropic semi-solid aluminum …


Impact Of Extended Sintering Times On Mechanical Properties In Pa-12 Parts Produced By Powderbed Fusion Processes, Garrett Craft, Justin Nussbaum, Nathan B. Crane, J. P. Harmon Aug 2018

Impact Of Extended Sintering Times On Mechanical Properties In Pa-12 Parts Produced By Powderbed Fusion Processes, Garrett Craft, Justin Nussbaum, Nathan B. Crane, J. P. Harmon

Faculty Publications

Additive Manufacturing provides many advantages in reduced lead times and increased geometric freedom compared to traditional manufacturing methods, but material properties are often reduced. This paper considers powder bed fusion of polyamide 12 (PA12, Nylon 12) produced by three different processes: laser sintering (LS), multijet fusion (MJF)/high speed sintering (HSS), and large area projection sintering (LAPS). While all utilize similar PA12 materials, they are found to differ significantly in mechanical properties especially in elongation to break. The slower heating methods (MJF/HSS and LAPS) produce large elongation at break with the LAPS process showing 10x elongation and MJF/HSS exhibiting 2.5x the …


Evaluation Of Processing Variables In Polymer Projection Sintering, Justin Nussbaum, Nathan B. Crane Jun 2018

Evaluation Of Processing Variables In Polymer Projection Sintering, Justin Nussbaum, Nathan B. Crane

Faculty Publications

Purpose – Projection sintering, a system for selectively sintering large areas of polymer powder simultaneously with a high power projector is introduced. The paper evaluates the suitability of laser sintering process parameters for projection sintering as it uses substantially lower intensities, longer exposure times, and larger areas than conventional laser sintering (LS).

Design/methodology/approach – The tradeoffs in sintering outcomes are evaluated by creating single layer components with varied exposure times and optical intensities. Some of these components were cross-sectioned and evaluated for degree of densification while the single layer thickness and the maximum tensile force was measured for the rest. …


Peridynamic Modeling Of Dynamic Fracture In Bio-Inspired Structures For High Velocity Impacts, Sneha Akula May 2018

Peridynamic Modeling Of Dynamic Fracture In Bio-Inspired Structures For High Velocity Impacts, Sneha Akula

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Bio-inspired damage resistant models have distinct patterns like brick-mortar, Voronoi, helicoidal etc., which show exceptional damage mitigation against high-velocity impacts. These unique patterns increase damage resistance (in some cases up to 3000 times more than the constituent materials) by effectively dispersing the stress waves produced by the impact. Ability to mimic these structures on a larger scale can be ground-breaking and could be used in numerous applications. Advancements in 3D printing have now made possible fabrication of these patterns with ease and at a low cost. Research on dynamic fracture in bio-inspired structures is very limited but it is …


Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen Apr 2018

Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen

Electronic Thesis and Dissertation Repository

Conjugated polymers are a class of electromechanically active materials that can produce motion in response to an electric potential. This motion can be harnessed to perform mechanical work, and therefore these materials are particularly well suited for use as sensors and actuators in microelectromechanical systems. Conventional methods to fabricate conjugated polymer actuators result in planar morphologies that limit fabricated devices to simplistic linear or bending actuation modes. To overcome this limitation, this work develops a conjugated polymer formulation and associated additive manufacturing method capable of realizing three-dimensional conductive polymer structures. A light-based additive manufacturing technique known as vat polymerization is …


Design And Implementation Of An Air Multiplier Fan For Pc, George Demian Jan 2017

Design And Implementation Of An Air Multiplier Fan For Pc, George Demian

Williams Honors College, Honors Research Projects

Mechanical engineering student (B.S.) senior design project. Conception, design (SolidWorks), 3D printing & processing, testing of a scaled down air multiplier "bladeless" fan within a computer chassis as a cooling solution.


Bioink Properties Before, During And After 3d Bioprinting, Katja Hölzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov Sep 2016

Bioink Properties Before, During And After 3d Bioprinting, Katja Hölzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov

Department of Mechanical and Materials Engineering: Faculty Publications

Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration …


Bioink Properties Before, During And After 3d Bioprinting, Katja Holzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov Jan 2016

Bioink Properties Before, During And After 3d Bioprinting, Katja Holzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov

Department of Mechanical and Materials Engineering: Faculty Publications

Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration …


Stress-Limiting Test Structures For Rapid Low-Cost Strength And Stiffness Assessment, Andrew Katz, Craig P. Lusk, Nathan B. Crane Jan 2015

Stress-Limiting Test Structures For Rapid Low-Cost Strength And Stiffness Assessment, Andrew Katz, Craig P. Lusk, Nathan B. Crane

Faculty Publications

Purpose: Evaluate the use of a simple printed geometry to estimate mechanical properties (elastic modulus, yield strength) with inexpensive test equipment.

Design Methodology/Approach: Test geometry is presented that enables controlled strains with manual deformation and repeatable measurement of vibrational frequencies. This is tested with multiple FDM machines to assess measurement accuracy and repeatability. Printing orientation and some printing parameters are varied to assess the measurement sensitivity.

Findings: The test methods show good correlation with manufacturer material specifications in the X-Y plane and reported elastic strain limits. It is also sensitive to printing orientation and printing parameters.

Research Limitations/Implications: Further work …


Farmbot, James Cruz, Scott Herrington, Bryan Rodriguez Dec 2014

Farmbot, James Cruz, Scott Herrington, Bryan Rodriguez

Mechanical Engineering

The purpose of this project was to develop the hardware for the current Farmbot to perform its primary functions, and to create a template for a system that would be adaptable for future users and developers. The scope of the project included creating a universal tool mount, a seeding system, and a watering and nutrient mixing system. This project was brought to the students by sponsor Rory Aronson, the creator of Farmbot. The Cal Poly Farmbot team was able to go through an extensive brainstorming and iterative process for each part, where testing was able to be incorporated immediately due …