Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Theses/Dissertations

2019

Institution
Keyword
Publication

Articles 31 - 60 of 90

Full-Text Articles in Engineering

Microsphere-Based Disordered Photonic Structures: Control Of Randomness In Langmuir-Blodgett Assembly And Radiative Cooling Applications, Sarun Atiganyanun May 2019

Microsphere-Based Disordered Photonic Structures: Control Of Randomness In Langmuir-Blodgett Assembly And Radiative Cooling Applications, Sarun Atiganyanun

Nanoscience and Microsystems ETDs

Many biological photonic structures in nature exhibit a significant degree of disorder within their periodic framework that enhances their optical properties. However, how such disorder contributes to the unique photonic characteristics is not yet fully understood. To facilitate studies on this topic, we investigated self-assembly of microspheres as a method to controllably introduce randomness to photonic structures. Specifically, we examined Langmuir-Blodgett assembly, a layer-by-layer fabrication technique. We developed and experimentally verified a model for the process and determined a condition of surface pressure and substrate pulling speed that corresponds to a maximum structural order in a layer. Along the trajectory …


Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin May 2019

Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin

McKelvey School of Engineering Theses & Dissertations

Abstract of the Dissertation

Defect Chemistry and Ion Intercalation During the Growth and Solid-State Transformation of Metal Halide Nanocrystals

Semiconductor metal halides as light-sensitive materials have applications in multiple areas, such as photographic film, antibacterial agents and photocatalysts. One focus of this dissertation is to achieve novel morphologies of ternary silver bromoiodide (AgBr1-xIx, 0

For the silver halide system, we demonstrate that the anion composition of AgBr1-xIx nanocrystals determines their shape through the introduction of twin defects as the nanocrystals are made more iodide-rich. AgBr1-xIx nanocrystals grow as single-phase, solid solutions with the rock salt crystal structure for anions compositions …


Multifunctional Properties Of Gan Nws Applied To Nanometrology, Nanophotonics, And Scanning Probe Microscopy/Lithography, Mahmoud Behzadirad May 2019

Multifunctional Properties Of Gan Nws Applied To Nanometrology, Nanophotonics, And Scanning Probe Microscopy/Lithography, Mahmoud Behzadirad

Optical Science and Engineering ETDs

GaN nanowires are promising for optical and optoelectronic applications because of their waveguiding properties and large optical bandgap. Recent researches have shown superior mechanical properties of GaN nanowires which promises their use in new research areas e.g. nanometrology. In this work, we develop a scalable two-step top-down approach using interferometric lithography as well a bottom-up growth of NWs using MOCVD, to manufacture highly-ordered arrays of nanowires with atomic surface roughness and desired aspect-ratios to be used in nanophotonics and atomic precision metrology and lithography. Using this method, uniform nanowire arrays were achieved over large-areas (~1 mm2) with aspect-ratio …


A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu May 2019

A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu

Electronic Thesis and Dissertation Repository

Dental caries remains one of the most common chronic diseases worldwide. Salivary proteins such as histatins have demonstrated biological functions directly related to tooth homeostasis and prevention of dental caries. However, histatins are susceptible to the high proteolytic activities in the oral environment. Therefore, pH-sensitive chitosan nanoparticles (CNs) have been proposed as potential carriers to target major oral diseases that occur under acidic conditions (e.g. dental caries and dental erosion). Four different types of chitosan polymers were investigated and the optimized CNs successfully loaded histatin 3 and released it selectively under acidic conditions. Through loading the survival time of histatin …


The Role Of Inter-Particle Behavior In Iron Oxide Nanoparticle Induction Heating, Hayden Seth Carlton May 2019

The Role Of Inter-Particle Behavior In Iron Oxide Nanoparticle Induction Heating, Hayden Seth Carlton

Graduate Theses and Dissertations

Due to their multi-functional nature, iron oxide nanoparticles present themselves in a myriad of scientific disciplines, but perhaps the most interesting property of these nanomaterials can be seen in their immense thermal response under the influence of alternating magnetic fields. Currently popularized as an alternative cancer treatment through localized hyperthermia, iron oxide nanoparticle induction heating presents an interesting physical phenomenon that distinguishes itself from macroscopic induction heating. Understanding how a single spherical particle behaves is relatively simple and remains well documented; however, magnetic interactions of a single particle often extend over many length scales, affecting numerous neighboring particles in the …


Assessing Commonly Used Methods In Measuring Yield Of Cellulose Nanocrystals, Marilyn Pharr May 2019

Assessing Commonly Used Methods In Measuring Yield Of Cellulose Nanocrystals, Marilyn Pharr

Biological and Agricultural Engineering Undergraduate Honors Theses

Cellulose is a ubiquitous, renewable biopolymer found in plants that can be broken down to isolate cellulose nanocrystals (CNCs). CNCs have been utilized in various applications that include biomedical technology, structural composites, and barrier films because of their unique mechanical, optical, and physicochemical properties. CNCs can be produced by a variety of approaches from cellulosic materials; however, strong acid hydrolysis is the most common and effective technique as it results in stable colloidal suspensions. Existing literature reveals a wide range of CNC yields, depending on the production process, raw material used, and the method of yield estimation. The yields of …


Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni May 2019

Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni

Mechanical Engineering Undergraduate Honors Theses

Graphene is an exciting new material with many promising applications. One such application of graphene is gas sensing, when adsorbed with transition metals, notably Palladium. Therefore, it is of paramount importance to have appropriate ab initio calculations to calculate the various properties of graphene under different adsorbates and gasses. The first step in these calculations is to have a functioning base Density Functional Theory (DFT) model of pristine graphene decorated with Palladium. The computational methods described in this paper has yielded results for pristine graphene that have been confirmed many times in previous experimental and theoretical studies. Future work needs …


Development Of A Ws2 Catalyst For Hydrogen Evolution And Improvement Via Platinum Nanoparticle Decoration, Alexander O'Brien May 2019

Development Of A Ws2 Catalyst For Hydrogen Evolution And Improvement Via Platinum Nanoparticle Decoration, Alexander O'Brien

Chemical Engineering Undergraduate Honors Theses

In response to a growing global need to improve utilization of green energy, the concept of renewable energy storage via electrolytic hydrogen production has gained popularity in recent years. However, the prohibitive expense of the bulk platinum catalysts currently used for the hydrogen evolution reaction prevents such a concept from being widely adoptable. This research focuses on a possible alternative catalyst, nanolayer WS2, which is capable of promoting the hydrogen evolution reaction while maintaining economic viability. Bulk WS2 was prepared in semiconducting, nanolayer form through liquid phase exfoliation. Prepared catalyst inks consisting of this material demonstrated successful …


Device Engineering Of Algan/Gan Hemts For Applications In Power-Electronic And Sensing, Isra Mahaboob May 2019

Device Engineering Of Algan/Gan Hemts For Applications In Power-Electronic And Sensing, Isra Mahaboob

Legacy Theses & Dissertations (2009 - 2024)

The research work presented in this Ph.D. thesis focuses on the engineering of AlGaN/GaN high electron mobility transistors (HEMTs) for the development of future device technology in power electronic and sensing applications.


Additive Manufacturing Of High Performance Flexible Thermoelectric Generators Using Nanoparticle Inks, Tony Valayil Varghese May 2019

Additive Manufacturing Of High Performance Flexible Thermoelectric Generators Using Nanoparticle Inks, Tony Valayil Varghese

Boise State University Theses and Dissertations

Flexible thermoelectric devices are attractive power sources for the growing demand of flexible electronics and sensors. Thermoelectric generators have an advantage due to no moving parts, silent operation and constant power production with a thermal gradient.

Conventional thermoelectric devices are rigid and fabricated using complex and relatively costly manufacturing processes, presenting a barrier to increase the market share of this technology. To overcome such barriers, this work focuses on developing near ambient-temperature flexible thermoelectric generators using relatively low-cost additive manufacturing processes. A screen printable ink was developed for transforming nanoparticle ink into high-performance flexible thermoelectric generators with a peak thermoelectric …


Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Graduate Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive …


Self-Assembled Nanoantenna Enhance Optical Activity And Transport In Scalable Thin Films And Interfaces, Keith Richard Berry Jr. May 2019

Self-Assembled Nanoantenna Enhance Optical Activity And Transport In Scalable Thin Films And Interfaces, Keith Richard Berry Jr.

Graduate Theses and Dissertations

Continued population growth and the decrease of existing energy platforms demands long-term solutions for development and implementation of scalable plasmonic metamaterials for energy and agricultural applications. Self-assembled nanoantenna into random and ordered arrangements are advanced herein for optical and thermal enhancements in scalable thin film. An analytical approach to estimating the thermal dynamics of random arrangements of nanoantenna resulted in estimates within 30% across a range of geometric parameters, nanoantenna-containing media, and thermal parameters. Multimodal thermal dynamics of polymer thin films containing gold nanoparticles (AuNPs) were observed through the natural log of the dimensionless temperature driving force plotted versus time …


Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath May 2019

Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath

Graduate Theses and Dissertations

The intricate nanostructures of layered titanates are unique among nanomaterials due to their easy and inexpensive syntheses. These nanomaterials have been proven valuable for use in industries as varied as energy, water treatment, and healthcare, and can be produced at industrial scales using already existent equipment. They have complex morphology, and surface structure well suited to chemical modification and doping. However, there is a longstanding debate on their lattice structure after the doping. There is a long-unmet need to understand, using both experimental and simulation methods, how dopants alter the clay-like layered crystal structure and associated physical and chemical properties. …


Modeling Multiphase Flow And Substrate Deformation In Nanoimprint Manufacturing Systems, Andrew Cochrane Apr 2019

Modeling Multiphase Flow And Substrate Deformation In Nanoimprint Manufacturing Systems, Andrew Cochrane

Nanoscience and Microsystems ETDs

Nanopatterns found in nature demonstrate that macroscopic properties of a surface are tied to its nano-scale structure. Tailoring the nanostructure allows those macroscopic surface properties to be engineered. However, a capability-gap in manufacturing technology inhibits mass-production of nanotechnologies based on simple, nanometer-scale surface patterns. This gap represents an opportunity for research and development of nanoimprint lithography (NIL) processes. NIL is a process for replicating patterns by imprinting a fluid layer with a solid, nano-patterned template, after which ultraviolet cure solidifies the fluid resulting in a nano-patterned surface. Although NIL has been demonstrated to replicate pattern features as small as 4 …


Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin Apr 2019

Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin

Nanoscience and Microsystems ETDs

Cystic fibrosis (CF) is the most common genetic disease resulting in the morbidity and mortality of Caucasian children and adults worldwide. Due to a genetic mutation resulting in malfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, CF patients produce highly viscous mucus in their respiratory tract. This leads to impairment of the mucociliary clearance of inhaled microbes. In addition to reduced microbial clearance, anoxic environmental conditions in the lungs promote biofilm-mode growth of the pathogenic bacterial species Pseudomonas aeruginosa. Chronic infections of P. aeruginosa begin in early childhood and typically persist until respiratory failure and death result. The …


Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo Apr 2019

Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo

Biomedical Engineering ETDs

Understanding the structure-function relationship of membrane receptors is essential to comprehend the crosstalk between key signaling pathways. Aberrant trans-activation between receptors can lead to tumorigenesis. Two of these receptors known to be involved in cancer development are receptor tyrosine kinases (RTKs), RON (Recepteur d'Origine Nantais) and EGFR (Epidermal Growth Factor Receptor). There has been evidence of heterodimerization and crosstalk between these two receptors based on co-immunoprecipitation, however the structural requirements behind these interactions remain unknown. Structural studies could provide insights into these RTKs’ modes of dimerization and structure-function relationship. However, structural studies of full-length membrane proteins are often difficult due …


Microwave And Ultrasonic Assisted Synthesis Of Zeolites From Coal Fly Ash In Batch And Circulating Batch Operation, Tahani Hassn Aldahri Apr 2019

Microwave And Ultrasonic Assisted Synthesis Of Zeolites From Coal Fly Ash In Batch And Circulating Batch Operation, Tahani Hassn Aldahri

Electronic Thesis and Dissertation Repository

This research was focused on the production of zeolites from CFA throughutilizing ultrasound and microwave power. The initial conventional heating process of 6 h prior to microwave irradiation for samples with high solid-to-liquid (S/L) ratio (CFA mass/ NaOH solution volume) led to a higher yield of zeolite and decreased the synthesis time and consumption of energy,while keeping the high quality of the synthesized zeolite intact. The crystal growth of the nuclei generated over 6 h of conventional hydrothermal treatment was enhanced by the post-microwave heating. Ultrasound-assisted zeolitizationCFA was also applied in this research.

When ultrasound energy was applied after hydrothermal …


Synthesis And Characterization Of Molybdenum Disulfide/Conducting Polymer Nanocomposite Materials For Supercapacitor Applications, Turki S. Alamro Apr 2019

Synthesis And Characterization Of Molybdenum Disulfide/Conducting Polymer Nanocomposite Materials For Supercapacitor Applications, Turki S. Alamro

USF Tampa Graduate Theses and Dissertations

The needs for energy storage devices have kindled researchers desire to explore and synthesize nanocomposite materials. Storing energy efficiently, effectively and sustainably are the science and engineering communities’ highest priorities to develop electrochemical energy storage devices. Supercapacitors have become power solution not only because supercapacitors can bridge the gap between the traditional capacitors and rechargeable batteries but also because of many other advantages which include extraordinary electrochemical properties, wide working-temperature range, cost effective, safe operation and long/stable cycle life. They have higher current pules than batteries due to the mechanism of charging and discharging. Batteries charging and discharging via chemical …


Numerical Simulation Of Viscoelastic Flow In Micro/Nanochannels, Lanju Mei Apr 2019

Numerical Simulation Of Viscoelastic Flow In Micro/Nanochannels, Lanju Mei

Mechanical & Aerospace Engineering Theses & Dissertations

Micro/Nanofluidic devices often involve use of biological fluids or polymeric solutions that cannot be simply treated as Newtonian fluids. The numerical simulation for the complex fluids at micro/nanoscale presents a significant computational challenge, and the inclusion of electrokinetic body force further increases the complexity. Specifically, the well-known High Weissenberg Number Problem (HWNP) has become a challenge for the numerical simulation of viscoelastic fluid. This dissertation is aimed to develop a numerical tool to simulate the behavior of viscoelastic fluid in the micro/nanochannel. The most popular log-conformation reformulation to solve the HWNP is presented and implemented in a finite volume scheme. …


The Effect Of Defects And Surface Modification On Biomolecular Assembly And Transport, Haneen Martinez Mar 2019

The Effect Of Defects And Surface Modification On Biomolecular Assembly And Transport, Haneen Martinez

Nanoscience and Microsystems ETDs

Nanoscale transport using the kinesin-microtubule (MT) biomolecular system has been successfully used in a wide range of nanotechnological applications including self-assembly, nanofluidic transport, and biosensing. Most of these applications use the ‘gliding motility geometry’, in which surface-adhered kinesin motors attach and propel MT filaments across the surface, a process driven by ATP hydrolysis. It has been demonstrated that active assembly facilitated by these biomolecular motors results in complex, non-equilibrium nanostructures currently unattainable through conventional self-assembly methods. In particular, MTs functionalized with biotin assemble into rings and spools upon introduction of streptavidin and/or streptavidin-coated nanoparticles. Upon closer examination of these structures …


Nanoparticle Synthesis For Glucose-Loaded Mesoporous Silica And Sucrose Hydrolysis Strategies For Bioanalyte Detection Applications Using A Personal Glucose Meter, Xiomar Emauel Bustos Perez Mar 2019

Nanoparticle Synthesis For Glucose-Loaded Mesoporous Silica And Sucrose Hydrolysis Strategies For Bioanalyte Detection Applications Using A Personal Glucose Meter, Xiomar Emauel Bustos Perez

USF Tampa Graduate Theses and Dissertations

Point-of-care (POC) tests are a reliable, portable, easy to use, and more affordable alternative to regular laboratory diagnostic tests. They bypass the necessity of expensive equipment, human labor, and technical expertise. The personal glucose meter (PGM) is a POC device that measures glucose levels in blood. Lately, the PGM have been used as a tool to detect other bioanalytes in different applications. There are two analytes which POC detection would be beneficial for patients: creatinine and tacrolimus. Creatinine is used to calculate glomerular filtration rate, a measurement of kidneys function that can help to diagnose kidney failure, and other nephropathies. …


Electrochemical Modification Of Granular Activated Carbon And Carbon Nanofibers To Determine Effect On Adsorption, Jose E. Martinez Sanchez Mar 2019

Electrochemical Modification Of Granular Activated Carbon And Carbon Nanofibers To Determine Effect On Adsorption, Jose E. Martinez Sanchez

Theses and Dissertations

Granular activated carbon and carbon nanofiber samples were tested as is and electrochemically modified to determine the effect on adsorption. An electrochemical cell was used to modify the carbon samples. The samples were then used in bench bottle tests with 2,4-dinitrotoluene (DNT), brilliant blue (BB) dye, and methylene blue (MB) dye solutions and sampled over time intervals. An ultraviolet–visible spectrophotometer was used to analyze the results of the bottle bench tests. The results indicated that electrochemically modified coal-based carbons’ adsorption were improved 25% over the adsorption of the as is carbon samples prior to modification. The electrochemical modification increased adsorption …


Axitinib Loaded Plga Nanoparticles For Age-Related Macular Degeneration, Priya P. Narvekar Mar 2019

Axitinib Loaded Plga Nanoparticles For Age-Related Macular Degeneration, Priya P. Narvekar

USF Tampa Graduate Theses and Dissertations

Despite of all the research going on for the treatment of ocular diseases, age-related macular degeneration (AMD) remains one of the serious vision threatening disease worldwide. Choroidal neovascularization, a pathophysiological characteristic of wet AMD, is the growth of anomalous blood vessels in the eye choroidal layer. Neovascularization is a key factor in AMD and thus anti-angiogenic therapy is beneficial in reducing the development of new abnormal blood vessels to prevent progression of AMD. Axitinib, multi-receptor tyrosine kinase inhibitor, is a small molecule that works by blocking vascular endothelial growth factor receptors (VEGFR) and platelet derived growth factor receptors (PDGFR) responsible …


Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani Feb 2019

Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani

Doctoral Dissertations

This work presents a novel counter-flow design for thermal stabilization of microfluidic thermal reactors. In these reactors, precise control of temperature of the liquid sample is achieved by moving the liquid sample through the thermal zones established ideally through the conduction in the solid material of the device. The goal here is to establish a linear thermal distribution when there is no flow and to minimize the temperature change at flow condition. External convection as well as internal flowinduced effects influence the prescribed thermal distribution. The counter-flow thermal gradient device developed in this study is capable of both stabilizing the …


Nano-Biophysical Approaches For Assessing Nanoparticle Interactions With Biological Systems, Zachary Untracht Jan 2019

Nano-Biophysical Approaches For Assessing Nanoparticle Interactions With Biological Systems, Zachary Untracht

Electronic Theses and Dissertations

Understanding interactions between nanoparticles and biological systems is fundamental for the development of emerging nano-biotechnology applications. In this thesis, I present an investigation of zinc oxide (ZnO) nanoparticles interactions with biomolecules in two separate studies. The first section of my thesis covers tracking and detection of ZnO nanoparticles using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). ZinkicideTM is a bactericidal ZnO nanoparticle which has been developed for agriculture. The characterization of Zinkicide in biological media and in solution has been difficult due to its high dispersibility and ultra-small size. SDS-PAGE is considered a golden standard for protein qualitative interpretations. In …


Gentamicin-Modified Nanocarriers For Placental Targeted Drug Delivery To Treat Pregnancy-Related Complications, Ali Alfaifi Jan 2019

Gentamicin-Modified Nanocarriers For Placental Targeted Drug Delivery To Treat Pregnancy-Related Complications, Ali Alfaifi

Wayne State University Dissertations

Diseases of pregnancy are the leading cause of maternal and neonatal morbidity and mortality affecting more than 20% (26 million) of all pregnancies annually. Those diseases include preeclampsia, preterm labor, intrauterine growth restriction and gestational diabetes, many of which are caused by compromised functions of the placenta. Placenta is a specialized organ that is only present during pregnancy where it creates a maternal-fetal interface that is responsible for many functions that contribute to the development of the fetus. Unfortunately, there is currently no treatment for any of those diseases. Our work focuses on the development of a novel nanoplatform that …


Developments Towards High-Flux Silica Nanosphere Substrates To Support Conforming Self-Assembled Gold Nanoparticle Monolayers For Applications In Size-Selective Filtration, Ryan Baker Vincent Jan 2019

Developments Towards High-Flux Silica Nanosphere Substrates To Support Conforming Self-Assembled Gold Nanoparticle Monolayers For Applications In Size-Selective Filtration, Ryan Baker Vincent

Theses, Dissertations and Capstones

Hydrophobic thiol coated gold nanoparticles have recently been investigated for their ability to self-assemble into robust, ultra-thin, porous membranes at a liquid-vapor interface. Due to the well-ordered, hexagonal close-packed nanoparticle arrays formed during the self-assembly process, these 2-dimensional sheets have very well-defined pore structures and have been shown to span gaps of several microns under ideal conditions. While these self-assembled nanoparticle monolayers have very promising applications in the field of size-selective filtration due to their well-defined pore structure, they need to be supported by a rigid substrate with a large amount of open area. Here, tightly packed arrays of silica …


Mesoporous Bimetallic Oxides Supported Mono And Bimetallic Catalysts For Fischer-Tropsch Studies In A Stainless-Steel Microchannel Reactor, Robert Stevens-Boyd Jan 2019

Mesoporous Bimetallic Oxides Supported Mono And Bimetallic Catalysts For Fischer-Tropsch Studies In A Stainless-Steel Microchannel Reactor, Robert Stevens-Boyd

Theses

Fischer-Tropsch (F-T) synthesis is the controlled catalyzed conversion of synthesized (syn) gas, a mixture of hydrogen and carbon monoxide, to fuel grade alkanes or hydrocarbons. One of the objectives of NSF-CREST Bioenergy Center is to develop stable catalysts for F-T synthesis with the goal of conversion of syngas enriched with CO2 in microchannel microreactors to liquid fuels. In our previous work, the effect of silica and titania sol-gel as support for F-T studies using syngas (CO:H2; 1:3 or 1:2) was investigated and significant differences in the activities of Co, Fe, and Ru catalysts were observed. In order to investigate synergistic …


Differential Mobility Classifiers In The Non-Ideal Assembly, Thamir Alsharifi Jan 2019

Differential Mobility Classifiers In The Non-Ideal Assembly, Thamir Alsharifi

Theses and Dissertations

The differential mobility classifier (DMC) is one of the core components in electrical mobility particle sizers for sizing sub-micrometer particles. Designing the DMC requires knowledge of the geometrical and constructional imperfection (or tolerance). Studying the effects of geometrical imperfection on the performance of the DMC is necessary to provide manufacturing tolerance and it helps to predict the performance of geometrically imperfect classifiers, as well as providing a calibration curve for the DMC. This thesis was accomplished via studying the cylindrical classifier and the parallel plate classifier. The numerical model was built using the most recent versions of COMSOL Multiphysics® …


Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills Jan 2019

Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills

Williams Honors College, Honors Research Projects

Fabrication and characterization nylon-6-MWCNT nanofiber as an electrochemical sensor to detect sodium ion concentrations specifically in sweat. Using contact angle to determine surface morphology and chronoamperometry testing to identify ideal sensor conditions, tests optimized parameters like weight percent of nylon or other polymers, carbon nanotube (CNT) isomer, and solution concentration to determine reproducibility of functional sensors. Utilizing the electric qualities of carbon nanotubes partnered with the sodium ion selectivity of calixarene treatment and polymers unique properties like flexibility and scalability create open an arena for optimizing sodium ion sensors for further development for functional prototypes. Morphology tests showed that the …