Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Doctoral Dissertations

Theses/Dissertations

Institution
Keyword
Publication Year

Articles 1 - 30 of 73

Full-Text Articles in Engineering

Stability Of Quantum Computers, Samudra Dasgupta May 2024

Stability Of Quantum Computers, Samudra Dasgupta

Doctoral Dissertations

Quantum computing's potential is immense, promising super-polynomial reductions in execution time, energy use, and memory requirements compared to classical computers. This technology has the power to revolutionize scientific applications such as simulating many-body quantum systems for molecular structure understanding, factorization of large integers, enhance machine learning, and in the process, disrupt industries like telecommunications, material science, pharmaceuticals and artificial intelligence. However, quantum computing's potential is curtailed by noise, further complicated by non-stationary noise parameter distributions across time and qubits. This dissertation focuses on the persistent issue of noise in quantum computing, particularly non-stationarity of noise parameters in transmon processors. It …


Adversarial Transferability And Generalization In Robust Deep Learning, Tao Wu Jan 2024

Adversarial Transferability And Generalization In Robust Deep Learning, Tao Wu

Doctoral Dissertations

Despite its remarkable achievements across a multitude of benchmark tasks, deep learning (DL) models exhibit significant fragility to adversarial examples, i.e., subtle modifications applied to inputs during testing yet effective in misleading DL models. These meticulously crafted perturbations possess the remarkable property of transferability: an adversarial example that effectively fools one model often retains its effectiveness against another model, even if the two models were trained independently. This research delves into the characteristics influencing the transferability of adversarial examples from three distinct and complementary perspectives: data, model, and optimization. Firstly, from the data perspective, we propose a new method of …


Exact Models, Heuristics, And Supervised Learning Approaches For Vehicle Routing Problems, Zefeng Lyu Dec 2023

Exact Models, Heuristics, And Supervised Learning Approaches For Vehicle Routing Problems, Zefeng Lyu

Doctoral Dissertations

This dissertation presents contributions to the field of vehicle routing problems by utilizing exact methods, heuristic approaches, and the integration of machine learning with traditional algorithms. The research is organized into three main chapters, each dedicated to a specific routing problem and a unique methodology. The first chapter addresses the Pickup and Delivery Problem with Transshipments and Time Windows, a variant that permits product transfers between vehicles to enhance logistics flexibility and reduce costs. To solve this problem, we propose an efficient mixed-integer linear programming model that has been shown to outperform existing ones. The second chapter discusses a practical …


Threads, Buckets, And Impact: A Framework For Tool Accelerated Machine Learning Courses, Jonathan Adam Niemirowski Aug 2023

Threads, Buckets, And Impact: A Framework For Tool Accelerated Machine Learning Courses, Jonathan Adam Niemirowski

Doctoral Dissertations

Artificial intelligence and machine learning (ML) have exploded in use, accessibility, and awareness in the past few years, particularly with the release of ChatGPT in late 2022. Advances in end-user ML tools are accelerating the development of ML applications, lowering the technical barrier of entry for users outside of the computer science (CS) community. Access to ML education within STEM is mostly limited to upper-level computer science courses that have deep pre-requisite requirements or to introductory workshops that yield limited ML skills. Despite the critical need for ML education, there is a lack of guidance in instructional design for applied …


Fabrication, Measurements, And Modeling Of Semiconductor Radiation Detectors For Imaging And Detector Response Functions, Corey David Ahl May 2023

Fabrication, Measurements, And Modeling Of Semiconductor Radiation Detectors For Imaging And Detector Response Functions, Corey David Ahl

Doctoral Dissertations

In the first part of this dissertation, we cover the development of a diamond semiconductor alpha-tagging sensor for associated particle imaging to solve challenges with currently employed scintillators. The alpha-tagging sensor is a double-sided strip detector made from polycrystalline CVD diamond. The performance goals of the alpha-tagging sensor are 700-picosecond timing resolution and 0.5 mm spatial resolution. A literature review summarizes the methodology, goals, and challenges in associated particle imaging. The history and current state of alpha-tagging sensors, followed by the properties of diamond semiconductors are discussed to close the literature review. The materials and methods used to calibrate the …


Direct Calculation Of Configurational Entropy: Pair Correlation Functions And Disorder, Clifton C. Sluss Aug 2022

Direct Calculation Of Configurational Entropy: Pair Correlation Functions And Disorder, Clifton C. Sluss

Doctoral Dissertations

Techniques such as classical molecular dynamics [MD] simulation provide ready access to the thermodynamic data of model material systems. However, the calculation of the Helmholtz and Gibbs free energies remains a difficult task due to the tedious nature of extracting accurate values of the excess entropy from MD simulation data. Thermodynamic integration, a common technique for the calculation of entropy requires numerous simulations across a range of temperatures. Alternative approaches to the direct calculation of entropy based on functionals of pair correlation functions [PCF] have been developed over the years. This work builds upon the functional approach tradition by extending …


Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby May 2022

Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby

Doctoral Dissertations

Reactor class nuclear fusion tokamaks will be inherently complex. Thousands of interconnected systems that span orders of magnitude in physical scale must operate cohesively for the machine to function. Because these reactor class tokamaks are all in an early design stage, it is difficult to quantify exactly how each subsystem will act within the context of the greater systems. Therefore, to predict the engineering parameters necessary to design the machine, simulation frameworks that can model individual systems as well as the interfaced systems are necessary. This dissertation outlines a novel framework developed to couple otherwise disparate computational domains together into …


Theoretical And Experimental Application Of Neural Networks In Spaceflight Control Systems, Pavel Galchenko Jan 2022

Theoretical And Experimental Application Of Neural Networks In Spaceflight Control Systems, Pavel Galchenko

Doctoral Dissertations

“Spaceflight systems can enable advanced mission concepts that can help expand our understanding of the universe. To achieve the objectives of these missions, spaceflight systems typically leverage guidance and control systems to maintain some desired path and/or orientation of their scientific instrumentation. A deep understanding of the natural dynamics of the environment in which these spaceflight systems operate is required to design control systems capable of achieving the desired scientific objectives. However, mitigating strategies are critically important when these dynamics are unknown or poorly understood and/or modelled. This research introduces two neural network methodologies to control the translation and rotation …


Deep Learning-Based Surrogate Models For Post-Earthquake Damage Assessment, Xinzhe Yuan Jan 2022

Deep Learning-Based Surrogate Models For Post-Earthquake Damage Assessment, Xinzhe Yuan

Doctoral Dissertations

"Seismic damage assessment is a critical step to enhance community resilience in the wake of an earthquake. This study aims to develop deep learning-based surrogate models for widely used fragility curves to achieve more accurate and rapid assessment in practice. These surrogate models are based on artificial neural networks trained from the labelled ground motions whose resulting damage classes on targeted structures are determined by nonlinear time history analyses. The development of various surrogate models is progressed in four phases. In Phase I, the multilayer perceptron (MLP) is used to develop multivariate seismic classifiers with up to 50 hand-crafted intensity …


Advances And Applications In High-Dimensional Heuristic Optimization, Samuel Alexander Vanfossan Jan 2022

Advances And Applications In High-Dimensional Heuristic Optimization, Samuel Alexander Vanfossan

Doctoral Dissertations

“Applicable to most real-world decision scenarios, multiobjective optimization is an area of multicriteria decision-making that seeks to simultaneously optimize two or more conflicting objectives. In contrast to single-objective scenarios, nontrivial multiobjective optimization problems are characterized by a set of Pareto optimal solutions wherein no solution unanimously optimizes all objectives. Evolutionary algorithms have emerged as a standard approach to determine a set of these Pareto optimal solutions, from which a decision-maker can select a vetted alternative. While easy to implement and having demonstrated great efficacy, these evolutionary approaches have been criticized for their runtime complexity when dealing with many alternatives or …


Machine Learning With Topological Data Analysis, Ephraim Robert Love May 2021

Machine Learning With Topological Data Analysis, Ephraim Robert Love

Doctoral Dissertations

Topological Data Analysis (TDA) is a relatively new focus in the fields of statistics and machine learning. Methods of exploiting the geometry of data, such as clustering, have proven theoretically and empirically invaluable. TDA provides a general framework within which to study topological invariants (shapes) of data, which are more robust to noise and can recover information on higher dimensional features than immediately apparent in the data. A common tool for conducting TDA is persistence homology, which measures the significance of these invariants. Persistence homology has prominent realizations in methods of data visualization, statistics and machine learning. Extending ML with …


Optimal Communication Structures For Concurrent Computing, Andrii Berdnikov May 2021

Optimal Communication Structures For Concurrent Computing, Andrii Berdnikov

Doctoral Dissertations

This research focuses on communicative solvers that run concurrently and exchange information to improve performance. This “team of solvers” enables individual algorithms to communicate information regarding their progress and intermediate solutions, and allows them to synchronize memory structures with more “successful” counterparts. The result is that fewer nodes spend computational resources on “struggling” processes. The research is focused on optimization of communication structures that maximize algorithmic efficiency using the theoretical framework of Markov chains. Existing research addressing communication between the cooperative solvers on parallel systems lacks generality: Most studies consider a limited number of communication topologies and strategies, while the …


An Analysis Of Modern Password Manager Security And Usage On Desktop And Mobile Devices, Timothy Oesch May 2021

An Analysis Of Modern Password Manager Security And Usage On Desktop And Mobile Devices, Timothy Oesch

Doctoral Dissertations

Security experts recommend password managers to help users generate, store, and enter strong, unique passwords. Prior research confirms that managers do help users move towards these objectives, but it also identified usability and security issues that had the potential to leak user data or prevent users from making full use of their manager. In this dissertation, I set out to measure to what extent modern managers have addressed these security issues on both desktop and mobile environments. Additionally, I have interviewed individuals to understand their password management behavior.

I begin my analysis by conducting the first security evaluation of the …


Exposure Assessment Of Emerging Contaminants: Rapid Screening And Modeling Of Plant Uptake, Majid Bagheri Jan 2021

Exposure Assessment Of Emerging Contaminants: Rapid Screening And Modeling Of Plant Uptake, Majid Bagheri

Doctoral Dissertations

"With the advent of new chemicals and their increasing uses in every aspect of our life, considerable number of emerging contaminants are introduced to environment yearly. Emerging contaminants in forms of pharmaceuticals, detergents, biosolids, and reclaimed wastewater can cross plant roots and translocate to various parts of the plants. Long-term human exposure to emerging contaminants through food consumption is assumed to be a pathway of interest. Thus, uptake and translocation of emerging contaminants in plants are important for the assessment of health risks associated with human exposure to emerging contaminants. To have a better understanding over fate of emerging contaminants …


Computational Intelligent Impact Force Modeling And Monitoring In Hislo Conditions For Maximizing Surface Mining Efficiency, Safety, And Health, Danish Ali Jan 2021

Computational Intelligent Impact Force Modeling And Monitoring In Hislo Conditions For Maximizing Surface Mining Efficiency, Safety, And Health, Danish Ali

Doctoral Dissertations

"Shovel-truck systems are the most widely employed excavation and material handling systems for surface mining operations. During this process, a high-impact shovel loading operation (HISLO) produces large forces that cause extreme whole body vibrations (WBV) that can severely affect the safety and health of haul truck operators. Previously developed solutions have failed to produce satisfactory results as the vibrations at the truck operator seat still exceed the “Extremely Uncomfortable Limits”. This study was a novel effort in developing deep learning-based solution to the HISLO problem.

This research study developed a rigorous mathematical model and a 3D virtual simulation model to …


Leveraging Conventional Internet Routing Protocol Behavior To Defeat Ddos And Adverse Networking Conditions, Jared M. Smith Aug 2020

Leveraging Conventional Internet Routing Protocol Behavior To Defeat Ddos And Adverse Networking Conditions, Jared M. Smith

Doctoral Dissertations

The Internet is a cornerstone of modern society. Yet increasingly devastating attacks against the Internet threaten to undermine the Internet's success at connecting the unconnected. Of all the adversarial campaigns waged against the Internet and the organizations that rely on it, distributed denial of service, or DDoS, tops the list of the most volatile attacks. In recent years, DDoS attacks have been responsible for large swaths of the Internet blacking out, while other attacks have completely overwhelmed key Internet services and websites. Core to the Internet's functionality is the way in which traffic on the Internet gets from one destination …


Computational Model For Neural Architecture Search, Ram Deepak Gottapu Jan 2020

Computational Model For Neural Architecture Search, Ram Deepak Gottapu

Doctoral Dissertations

"A long-standing goal in Deep Learning (DL) research is to design efficient architectures for a given dataset that are both accurate and computationally inexpensive. At present, designing deep learning architectures for a real-world application requires both human expertise and considerable effort as they are either handcrafted by careful experimentation or modified from a handful of existing models. This method is inefficient as the process of architecture design is highly time-consuming and computationally expensive.

The research presents an approach to automate the process of deep learning architecture design through a modeling procedure. In particular, it first introduces a framework that treats …


Social Media Based Algorithmic Clinical Decision Support Learning From Behavioral Predispositions, Radhika V. Medury Jan 2020

Social Media Based Algorithmic Clinical Decision Support Learning From Behavioral Predispositions, Radhika V. Medury

Doctoral Dissertations

Behavioral disorders are disabilities characterized by an individual’s mood, thinking, and social interactions. The commonality of behavioral disorders amongst the United States population has increased in the last few years, with an estimated 50% of all Americans diagnosed with a behavioral disorder at some point in their lifetime. AttentionDeficit/Hyperactivity Disorder is one such behavioral disorder that is a severe public health concern because of its high prevalence, incurable nature, significant impact on domestic life, and peer relationships. Symptomatically, in theory, ADHD is characterized by inattention, hyperactivity, and impulsivity. Access to providers who can offer diagnosis and treat the disorder varies …


Observer-Based Event-Triggered And Set-Theoretic Neuro-Adaptive Controls For Constrained Uncertain Systems, Abdul Ghafoor Jan 2020

Observer-Based Event-Triggered And Set-Theoretic Neuro-Adaptive Controls For Constrained Uncertain Systems, Abdul Ghafoor

Doctoral Dissertations

"In this study, several new observer-based event-triggered and set-theoretic control schemes are presented to advance the state of the art in neuro-adaptive controls. In the first part, six new event-triggered neuro-adaptive control (ETNAC) schemes are presented for uncertain linear systems. These comprehensive designs offer flexibility to choose a design depending upon system performance requirements. Stability proofs for each scheme are presented and their performance is analyzed using benchmark examples. In the second part, the scope of the ETNAC is extended to uncertain nonlinear systems. It is applied to a case of precision formation flight of the microsatellites at the Sun-Earth/Moon …


An Approach To System Of Systems Resiliency Using Architecture And Agent-Based Behavioral Modeling, Paulette Bootz Acheson Jan 2020

An Approach To System Of Systems Resiliency Using Architecture And Agent-Based Behavioral Modeling, Paulette Bootz Acheson

Doctoral Dissertations

”In today’s world it is no longer a question of whether a system will be compromised but when the system will be compromised. Consider the recent compromise of the Democratic National Committee (DNC) and Hillary Clinton emails as well as the multiple Yahoo breaches and the break into the Target customer database. The list of exploited vulnerabilities and successful cyber-attacks goes on and on. Because of the amount and frequency of the cyber-attacks, resiliency has taken on a whole new meaning. There is a new perspective within defense to consider resiliency in terms of Mission Success.

This research develops a …


Human Behavior Understanding For Worker-Centered Intelligent Manufacturing, Wenjin Tao Jan 2020

Human Behavior Understanding For Worker-Centered Intelligent Manufacturing, Wenjin Tao

Doctoral Dissertations

“In a worker-centered intelligent manufacturing system, sensing and understanding of the worker’s behavior are the primary tasks, which are essential for automatic performance evaluation & optimization, intelligent training & assistance, and human-robot collaboration. In this study, a worker-centered training & assistant system is proposed for intelligent manufacturing, which is featured with self-awareness and active-guidance. To understand the hand behavior, a method is proposed for complex hand gesture recognition using Convolutional Neural Networks (CNN) with multiview augmentation and inference fusion, from depth images captured by Microsoft Kinect. To sense and understand the worker in a more comprehensive way, a multi-modal approach …


Deep Learning For Digitized Histology Image Analysis, Sudhir Sornapudi Jan 2020

Deep Learning For Digitized Histology Image Analysis, Sudhir Sornapudi

Doctoral Dissertations

“Cervical cancer is the fourth most frequent cancer that affects women worldwide. Assessment of cervical intraepithelial neoplasia (CIN) through histopathology remains as the standard for absolute determination of cancer. The examination of tissue samples under a microscope requires considerable time and effort from expert pathologists. There is a need to design an automated tool to assist pathologists for digitized histology slide analysis. Pre-cervical cancer is generally determined by examining the CIN which is the growth of atypical cells from the basement membrane (bottom) to the top of the epithelium. It has four grades, including: Normal, CIN1, CIN2, and CIN3. In …


Development Of A Modeling Algorithm To Predict Lean Implementation Success, Richard Charles Barclay Jan 2020

Development Of A Modeling Algorithm To Predict Lean Implementation Success, Richard Charles Barclay

Doctoral Dissertations

”Lean has become a common term and goal in organizations throughout the world. The approach of eliminating waste and continuous improvement may seem simple on the surface but can be more complex when it comes to implementation. Some firms implement lean with great success, getting complete organizational buy-in and realizing the efficiencies foundational to lean. Other organizations struggle to implement lean. Never able to get the buy-in or traction needed to really institute the sort of cultural change that is often needed to implement change. It would be beneficial to have a tool that organizations could use to assess their …


Studying The Effects Of Various Process Parameters On Early Age Hydration Of Single- And Multi-Phase Cementitious Systems, Rachel Cook Jan 2020

Studying The Effects Of Various Process Parameters On Early Age Hydration Of Single- And Multi-Phase Cementitious Systems, Rachel Cook

Doctoral Dissertations

”The hydration of multi-phase ordinary Portland cement (OPC) and its pure phase derivatives, such as tricalcium silicate (C3S) and belite (ß-C2S), are studied in the context varying process parameters -- for instance, variable water content, water activity, superplasticizer structure and dose, and mineral additive type and particle size. These parameters are studied by means of physical experiments and numerical/computational techniques, such as: thermodynamic estimations; numerical kinetic-based modelling; and artificial intelligence techniques like machine learning (ML) models. In the past decade, numerical kinetic modeling has greatly improved in terms of fitting experimental, isothermal calorimetry to kinetic-based modelling …


System Efficient Esd Design Concept For Soft Failures, Giorgi Maghlakelidze Jan 2020

System Efficient Esd Design Concept For Soft Failures, Giorgi Maghlakelidze

Doctoral Dissertations

"This research covers the topic of developing a systematic methodology of studying electrostatic discharge (ESD)-induced soft failures. ESD-induced soft failures (SF) are non-destructive disruptions of the functionality of an electronic system. The soft failure robustness of a USB3 Gen 1 interface is investigated, modeled, and improved. The injection is performed directly using transmission line pulser (TLP) with varying: pulse width, amplitude, polarity. Characterization provides data for failure thresholds and a SPICE circuit model that describes the transient voltage and current at the victim. Using the injected current, the likelihood of a SF is predicted. ESD protection by transient voltage suppressor …


Feature Space Modeling For Accurate And Efficient Learning From Non-Stationary Data, Ayesha Akter Oct 2019

Feature Space Modeling For Accurate And Efficient Learning From Non-Stationary Data, Ayesha Akter

Doctoral Dissertations

A non-stationary dataset is one whose statistical properties such as the mean, variance, correlation, probability distribution, etc. change over a specific interval of time. On the contrary, a stationary dataset is one whose statistical properties remain constant over time. Apart from the volatile statistical properties, non-stationary data poses other challenges such as time and memory management due to the limitation of computational resources mostly caused by the recent advancements in data collection technologies which generate a variety of data at an alarming pace and volume. Additionally, when the collected data is complex, managing data complexity, emerging from its dimensionality and …


Volumetric Error Compensation For Industrial Robots And Machine Tools, Le Ma Jan 2019

Volumetric Error Compensation For Industrial Robots And Machine Tools, Le Ma

Doctoral Dissertations

“A more efficient and increasingly popular volumetric error compensation method for machine tools is to compute compensation tables in axis space with tool tip volumetric measurements. However, machine tools have high-order geometric errors and some workspace is not reachable by measurement devices, the compensation method suffers a curve-fitting challenge, overfitting measurements in measured space and losing accuracy around and out of the measured space. Paper I presents a novel method that aims to uniformly interpolate and extrapolate the compensation tables throughout the entire workspace. By using a uniform constraint to bound the tool tip error slopes, an optimal model with …


Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib Jan 2019

Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib

Doctoral Dissertations

"The main focus of this work is to use machine learning and data mining techniques to address some challenging problems that arise from nuclear data. Specifically, two problem areas are discussed: nuclear imaging and radiation detection. The techniques to approach these problems are primarily based on a variant of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN), which is one of the most popular forms of 'deep learning' technique.

The first problem is about interpreting and analyzing 3D medical radiation images automatically. A method is developed to identify and quantify deformable image registration (DIR) errors from lung CT scans …


Deep Neural Network Learning-Based Classifier Design For Big-Data Analytics, Krishnan Raghavan Jan 2019

Deep Neural Network Learning-Based Classifier Design For Big-Data Analytics, Krishnan Raghavan

Doctoral Dissertations

"In this digital age, big-data sets are commonly found in the field of healthcare, manufacturing and others where sustainable analysis is necessary to create useful information. Big-data sets are often characterized by high-dimensionality and massive sample size. High dimensionality refers to the presence of unwanted dimensions in the data where challenges such as noise, spurious correlation and incidental endogeneity are observed. Massive sample size, on the other hand, introduces the problem of heterogeneity because complex and unstructured data types must analyzed. To mitigate the impact of these challenges while considering the application of classification, a two step analysis approach is …


Multidimensional Feature Engineering For Post-Translational Modification Prediction Problems, Norman Mapes Jr. Nov 2018

Multidimensional Feature Engineering For Post-Translational Modification Prediction Problems, Norman Mapes Jr.

Doctoral Dissertations

Protein sequence data has been produced at an astounding speed. This creates an opportunity to characterize these proteins for the treatment of illness. A crucial characterization of proteins is their post translational modifications (PTM). There are 20 amino acids coded by DNA after coding (translation) nearly every protein is modified at an amino acid level. We focus on three specific PTMs. First is the bonding formed between two cysteine amino acids, thus introducing a loop to the straight chain of a protein. Second, we predict which cysteines can generally be modified (oxidized). Finally, we predict which lysine amino acids are …