Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Portland State University

Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 151

Full-Text Articles in Engineering

An Overview Of Elements And Relations: Aspects Of A Scientific Metaphysics, Martin Zwick Nov 2023

An Overview Of Elements And Relations: Aspects Of A Scientific Metaphysics, Martin Zwick

Systems Science Faculty Publications and Presentations

A talk on my book, Elements and Relations: Aspects of a Scientific Metaphysics. Book description:

This book develops the core proposition that systems theory is an attempt to construct an “exact and scientific metaphysics,” a system of general ideas central to science that can be expressed mathematically. Collectively, these ideas would constitute a non-reductionist “theory of everything” unlike what is being sought in physics. Inherently transdisciplinary, systems theory offers ideas and methods that are relevant to all of the sciences and also to professional fields such as systems engineering, public policy, business, and social work. To demonstrate the generality …


Multi-Agent Deep Reinforcement Learning For Radiation Localization, Benjamin Scott Totten Aug 2023

Multi-Agent Deep Reinforcement Learning For Radiation Localization, Benjamin Scott Totten

Dissertations and Theses

For the safety of both equipment and human life, it is important to identify the location of orphaned radioactive material as quickly and accurately as possible. There are many factors that make radiation localization a challenging task, such as low gamma radiation signal strength and the need to search in unknown environments without prior information. The inverse-square relationship between the intensity of radiation and the source location, the probabilistic nature of nuclear decay and gamma ray detection, and the pervasive presence of naturally occurring environmental radiation complicates localization tasks. The presence of obstructions in complex environments can further attenuate the …


Systems Thinking Activities Used In K-12 For Up To Two Decades, Diana Fisher, Systems Thinking Association Feb 2023

Systems Thinking Activities Used In K-12 For Up To Two Decades, Diana Fisher, Systems Thinking Association

Systems Science Faculty Publications and Presentations

Infusing systems thinking activities in pre-college education (grades K-12) means updating precollege education so it includes a study of many systemic behavior patterns that are ubiquitous in the real world. Systems thinking tools include those using both paper and pencil and the computer and enhance learning in the classroom making it more student-centered, more active, and allowing students to analyze problems that have been heretofore beyond the scope of K-12 classrooms. Students in primary school have used behavior over time graphs to demonstrate dynamics described in story books, like the Lorax, and created stock-flow diagrams to describe what was needed …


Machine Learning Predictions Of Electricity Capacity, Marcus Harris, Elizabeth Kirby, Ameeta Agrawal, Rhitabrat Pokharel, Francis Puyleart, Martin Zwick Jan 2023

Machine Learning Predictions Of Electricity Capacity, Marcus Harris, Elizabeth Kirby, Ameeta Agrawal, Rhitabrat Pokharel, Francis Puyleart, Martin Zwick

Systems Science Faculty Publications and Presentations

This research applies machine learning methods to build predictive models of Net Load Imbalance for the Resource Sufficiency Flexible Ramping Requirement in the Western Energy Imbalance Market. Several methods are used in this research, including Reconstructability Analysis, developed in the systems community, and more well-known methods such as Bayesian Networks, Support Vector Regression, and Neural Networks. The aims of the research are to identify predictive variables and obtain a new stand-alone model that improves prediction accuracy and reduces the INC (ability to increase generation) and DEC (ability to decrease generation) Resource Sufficiency Requirements for Western Energy Imbalance Market participants. This …


Data From: Machine Learning Predictions Of Electricity Capacity, Marcus Harris, Elizabeth Kirby, Ameeta Agrawal, Rhitabrat Pokharel, Francis Puyleart, Martin Zwick Dec 2022

Data From: Machine Learning Predictions Of Electricity Capacity, Marcus Harris, Elizabeth Kirby, Ameeta Agrawal, Rhitabrat Pokharel, Francis Puyleart, Martin Zwick

Systems Science Faculty Datasets

This research applies machine learning methods to build predictive models of Net Load Imbalance for the Resource Sufficiency Flexible Ramping Requirement in the Western Energy Imbalance Market. Several methods are used in this research, including Reconstructability Analysis, developed in the systems community, and more well-known methods such as Bayesian Networks, Support Vector Regression, and Neural Networks. The aims of the research are to identify predictive variables and obtain a new stand-alone model that improves prediction accuracy and reduces the INC (ability to increase generation) and DEC (ability to decrease generation) Resource Sufficiency Requirements for Western Energy Imbalance Market participants. This …


System Dynamics Modeling For Traumatic Brain Injury: Mini-Review Of Applications, Erin S. Kenzie, Elle L. Parks, Nancy Carney, Wayne Wakeland Aug 2022

System Dynamics Modeling For Traumatic Brain Injury: Mini-Review Of Applications, Erin S. Kenzie, Elle L. Parks, Nancy Carney, Wayne Wakeland

Systems Science Faculty Publications and Presentations

Traumatic brain injury (TBI) is a highly complex phenomenon involving a cascade of disruptions across biomechanical, neurochemical, neurological, cognitive, emotional, and social systems. Researchers and clinicians urgently need a rigorous conceptualization of brain injury that encompasses nonlinear and mutually causal relations among the factors involved, as well as sources of individual variation in recovery trajectories. System dynamics, an approach from systems science, has been used for decades in fields such as management and ecology to model nonlinear feedback dynamics in complex systems. In this mini-review, we summarize some recent uses of this approach to better understand acute injury mechanisms, recovery …


Learning From Machines: Insights In Forest Transpiration Using Machine Learning Methods, Morgan Tholl Jul 2022

Learning From Machines: Insights In Forest Transpiration Using Machine Learning Methods, Morgan Tholl

Dissertations and Theses

Machine learning has been used as a tool to model transpiration for individual sites, but few models are capable of generalizing to new locations without calibration to site data. Using the global SAPFLUXNET database, 95 tree sap flow data sites were grouped using three clustering strategies: by biome, by tree functional type, and through use of a k-means unsupervised clustering algorithm. Two supervised machine learning algorithms, a random forest algorithm and a neural network algorithm, were used to build machine learning models that predicted transpiration for each cluster. The performance and feature importance in each model were analyzed and compared …


Reducing Opioid Use Disorder And Overdose Deaths In The United States: A Dynamic Modeling Analysis, Erin J. Stringfellow, Tse Yang Lim, Keith Humphreys, Catherine Digennero, Celia Stafford, Elizabeth Beaulieu, Jack Homer, Wayne Wakeland, Multiple Additional Authors Jun 2022

Reducing Opioid Use Disorder And Overdose Deaths In The United States: A Dynamic Modeling Analysis, Erin J. Stringfellow, Tse Yang Lim, Keith Humphreys, Catherine Digennero, Celia Stafford, Elizabeth Beaulieu, Jack Homer, Wayne Wakeland, Multiple Additional Authors

Systems Science Faculty Publications and Presentations

Opioid overdose deaths remain a major public health crisis. We used a system dynamics simulation model of the U.S. opioid-using population age 12 and older to explore the impacts of 11 strategies on the prevalence of opioid use disorder (OUD) and fatal opioid overdoses from 2022 to 2032. These strategies spanned opioid misuse and OUD prevention, buprenorphine capacity, recovery support, and overdose harm reduction. By 2032, three strategies saved the most lives: (i) reducing the risk of opioid overdose involving fentanyl use, which may be achieved through fentanyl-focused harm reduction services; (ii) increasing naloxone distribution to people who use opioids; …


Growing Reservoir Networks Using The Genetic Algorithm Deep Hyperneat, Nancy L. Mackenzie May 2022

Growing Reservoir Networks Using The Genetic Algorithm Deep Hyperneat, Nancy L. Mackenzie

Student Research Symposium

Typical Artificial Neural Networks (ANNs) have static architectures. The number of nodes and their organization must be chosen and tuned for each task. Choosing these values, or hyperparameters, is a bit of a guessing game, and optimizing must be repeated for each task. If the model is larger than necessary, this leads to more training time and computational cost. The goal of this project is to evolve networks that grow according to the task at hand. By gradually increasing the size and complexity of the network to the extent that the task requires, we will build networks that are more …


Reconstructability Analysis: Discrete Multivariate Modeling, Martin Zwick Jan 2022

Reconstructability Analysis: Discrete Multivariate Modeling, Martin Zwick

Systems Science Faculty Publications and Presentations

An introduction to Reconstructability Analysis for the Discrete Multivariate Modeling course and for other purposes.


Expanding Temperature Sensing For The Orion Bms 2, Samuel J. Parker Oct 2021

Expanding Temperature Sensing For The Orion Bms 2, Samuel J. Parker

University Honors Theses

Formula SAE (FSAE) is an annual collegiate design competition that takes place across the globe. Portland State University’s team, Viking Motorsports, was committed to designing an Electric Vehicle (EV) for the 2021 FSAE competition. The team designed a completely custom lithium-ion cell battery that is managed by an Orion BMS 2 battery management system. The FSAE rulebook requires a robust temperature monitoring system for any EV power supply. The Orion BMS 2 can only directly collect data from eight temperature sensors, which is not enough to meet FSAE regulation. However, the BMS can be configured to monitor many more sensors …


Digitally Reporting Trail Obstructions In Forest Park, Colton S. Maybee Aug 2021

Digitally Reporting Trail Obstructions In Forest Park, Colton S. Maybee

REU Final Reports

The inclusion of technology on the trail can lead to better experiences for everyone involved in the hobby. Hikers can play a more prominent role in the maintenance of the trails by being able to provide better reports of obstructions while directly on the trail. This paper goes into the project of revamping the obstruction report system applied at Forest Park in Portland, Oregon. Most of my contributions to the project focus on mobile app development with some research into path planning algorithms related to the continuations of this project.


Forest Park Trail Monitoring, Adan Robles, Colton S. Maybee, Erin Dougherty Aug 2021

Forest Park Trail Monitoring, Adan Robles, Colton S. Maybee, Erin Dougherty

REU Final Reports

Forest Park, one of the largest public parks in the United States with over 40 trails to pick from when planning a hiking trip. One of the main problems this park has is that there are too many trails, and a lot of the trails extend over 3 miles. Due to these circumstances’ trails are not checked frequently and hikers are forced to hike trails in the area with no warnings of potential hazards they can encounter. In this paper I researched how Forest Park currently monitors its trails and then set up a goal to solve the problem. We …


Automated Statistical Structural Testing Techniques And Applications, Yang Shi Aug 2021

Automated Statistical Structural Testing Techniques And Applications, Yang Shi

Dissertations and Theses

Statistical structural testing(SST) is an effective testing technique that produces random test inputs from probability distributions. SST shows superiority in fault-revealing power over random testing and deterministic approaches since it heritages the merits from both of them. SST ensures testing thoroughness by setting up a probability lower-bound criterion for each structural cover element and test inputs that exercise a structural cover element sampled from the probability distribution, ensuring testing randomness. Despite the advantages, SST is not a widely used approach in practice. There are two major limitations. First, to construct probability distributions, a tester must understand the underlying software's structure, …


Quantum Grover's Oracles With Symmetry Boolean Functions, Peng Gao Aug 2021

Quantum Grover's Oracles With Symmetry Boolean Functions, Peng Gao

Dissertations and Theses

Quantum computing has become an important research field of computer science and engineering. Among many quantum algorithms, Grover's algorithm is one of the most famous ones. Designing an effective quantum oracle poses a challenging conundrum in circuit and system-level design for practical application realization of Grover's algorithm.

In this dissertation, we present a new method to build quantum oracles for Grover's algorithm to solve graph theory problems. We explore generalized Boolean symmetric functions with lattice diagrams to develop a low quantum cost and area efficient quantum oracle. We study two graph theory problems: cycle detection of undirected graphs and generalized …


Graphical Models In Reconstructability Analysis And Bayesian Networks, Marcus Harris, Martin Zwick Jul 2021

Graphical Models In Reconstructability Analysis And Bayesian Networks, Marcus Harris, Martin Zwick

Systems Science Faculty Publications and Presentations

Reconstructability Analysis (RA) and Bayesian Networks (BN) are both probabilistic graphical modeling methodologies used in machine learning and artificial intelligence. There are RA models that are statistically equivalent to BN models and there are also models unique to RA and models unique to BN. The primary goal of this paper is to unify these two methodologies via a lattice of structures that offers an expanded set of models to represent complex systems more accurately or more simply. The conceptualization of this lattice also offers a framework for additional innovations beyond what is presented here. Specifically, this paper integrates RA and …


Universal Biological Motions For Educational Robot Theatre And Games, Rajesh Venkatachalapathy, Martin Zwick, Adam Slowik, Kai Brooks, Mikhail Mayers, Roman Minko, Tyler Hull, Bliss Brass, Marek Perkowski Jun 2021

Universal Biological Motions For Educational Robot Theatre And Games, Rajesh Venkatachalapathy, Martin Zwick, Adam Slowik, Kai Brooks, Mikhail Mayers, Roman Minko, Tyler Hull, Bliss Brass, Marek Perkowski

Systems Science Faculty Publications and Presentations

Paper presents a concept that is new to robotics education and social robotics. It is based on theatrical games, in motions for social robots and animatronic robots. Presented here motion model is based on Drift Differential Model from biology and Fokker-Planck equations. This model is used in various areas of science to describe many types of motion. The model was successfully verified on various simulated mobile robots and a motion game of three robots called "Mouse and Cheese."


A Method For Comparative Analysis Of Trusted Execution Environments, Stephano Cetola Jun 2021

A Method For Comparative Analysis Of Trusted Execution Environments, Stephano Cetola

Dissertations and Theses

The problem of secure remote computation has become a serious concern of hardware manufacturers and software developers alike. Trusted Execution Environments (TEEs) are a solution to the problem of secure remote computation in applications ranging from "chip and pin" financial transactions to intellectual property protection in modern gaming systems. While extensive literature has been published about many of these technologies, there exists no current model for comparing TEEs. This thesis provides hardware architects and designers with a set of tools for comparing TEEs. I do so by examining several properties of a TEE and comparing their implementations in several technologies. …


A Golden Age For Computing Frontiers, A Dark Age For Computing Education?, Christof Teuscher May 2021

A Golden Age For Computing Frontiers, A Dark Age For Computing Education?, Christof Teuscher

Electrical and Computer Engineering Faculty Publications and Presentations

There is no doubt that the body of knowledge spanned by the computing disciplines has gone through an unprecedented expansion, both in depth and breadth, over the last century. In this position paper, we argue that this expansion has led to a crisis in computing education: quite literally the vast majority of the topics of interest of this conference are not taught at the undergraduate level and most graduate courses will only scratch the surface of a few selected topics. But alas, industry is increasingly expecting students to be familiar with emerging topics, such as neuromorphic, probabilistic, and quantum computing, …


Using Information Theory To Extract Patterns From Categorical Raster Data, David Percy Apr 2021

Using Information Theory To Extract Patterns From Categorical Raster Data, David Percy

Systems Science Faculty Publications and Presentations

Information theory -- Reconstructability Analysis (RA) implemented in the Occam software -- was used to extract patterns from National Land Cover Data. The aim was to predict temporal change in evergreen forests from time-lagged and spatially adjacent states. The NLCD satellite data were preprocessed with Python and submitted to Occam for analysis, and Occam output was also explored with R-studio. The effectiveness of RA methodology for the analysis of this type of categorical space-time grid data was demonstrated.


Automated Test Generation For Validating Systemc Designs, Bin Lin Jan 2021

Automated Test Generation For Validating Systemc Designs, Bin Lin

Dissertations and Theses

Modern system design involves integration of all components of a system on a single chip, namely System-on-a-Chip (SoC). The ever-increasing complexity of SoCs and rapidly decreasing time-to-market have pushed the design abstraction to the electronic system level (ESL), in order to increase design productivity. SystemC is a widely used ESL modeling language that plays a central role in modern SoCs design process. ESL SystemC designs usually serve as executable specifications for the subsequent SoCs design flow. Therefore, undetected bugs in ESL SystemC designs may propagate to low-level implementations or even final silicon products. In addition, modern SoCs design often involves …


Sensitivity Analysis Of An Agent-Based Simulation Model Using Reconstructability Analysis, Andey M. Nunes, Martin Zwick, Wayne Wakeland Dec 2020

Sensitivity Analysis Of An Agent-Based Simulation Model Using Reconstructability Analysis, Andey M. Nunes, Martin Zwick, Wayne Wakeland

Systems Science Faculty Publications and Presentations

Reconstructability analysis, a methodology based on information theory and graph theory, was used to perform a sensitivity analysis of an agent-based model. The NetLogo BehaviorSpace tool was employed to do a full 2k factorial parameter sweep on Uri Wilensky’s Wealth Distribution NetLogo model, to which a Gini-coefficient convergence condition was added. The analysis identified the most influential predictors (parameters and their interactions) of the Gini coefficient wealth inequality outcome. Implications of this type of analysis for building and testing agent-based simulation models are discussed.


Extending The Functional Subnetwork Approach To A Generalized Linear Integrate-And-Fire Neuron Model, Nicholas Szczecinski, Roger Quinn, Alexander J. Hunt Nov 2020

Extending The Functional Subnetwork Approach To A Generalized Linear Integrate-And-Fire Neuron Model, Nicholas Szczecinski, Roger Quinn, Alexander J. Hunt

Mechanical and Materials Engineering Faculty Publications and Presentations

Engineering neural networks to perform specific tasks often represents a monumental challenge in determining network architecture and parameter values. In this work, we extend our previously-developed method for tuning networks of non-spiking neurons, the “Functional subnetwork approach” (FSA), to the tuning of networks composed of spiking neurons. This extension enables the direct assembly and tuning of networks of spiking neurons and synapses based on the network’s intended function, without the use of global optimization ormachine learning. To extend the FSA, we show that the dynamics of a generalized linear integrate and fire (GLIF) neuronmodel have fundamental similarities to those of …


Facilitating Mixed Self-Timed Circuits, Alexandra R. Hanson May 2020

Facilitating Mixed Self-Timed Circuits, Alexandra R. Hanson

University Honors Theses

Designers constrain the ordering of computation events in self-timed circuits to ensure the correct behavior of the circuits. Different circuit families utilize different constraints that, when families are combined, may be more difficult to guarantee in combination without inserting delay to postpone necessary events. By analyzing established constraints of different circuit families like Click and GasP, we are able to identify the small changes necessary to either 1) avoid constraints entirely; or 2) decrease the likelihood of necessary delay insertion. Because delay insertion can be tricky for novice designers and because the likelihood of its requirement increases when mixing different …


A Quantum Algorithm For Automata Encoding, Edison Tsai, Marek Perkowski Jan 2020

A Quantum Algorithm For Automata Encoding, Edison Tsai, Marek Perkowski

Electrical and Computer Engineering Faculty Publications and Presentations

Encoding of finite automata or state machines is critical to modern digital logic design methods for sequential circuits. Encoding is the process of assigning to every state, input value, and output value of a state machine a binary string, which is used to represent that state, input value, or output value in digital logic. Usually, one wishes to choose an encoding that, when the state machine is implemented as a digital logic circuit, will optimize some aspect of that circuit. For instance, one might wish to encode in such a way as to minimize power dissipation or silicon area. For …


An Application Of Deep Learning Models To Automate Food Waste Classification, Alejandro Zachary Espinoza Dec 2019

An Application Of Deep Learning Models To Automate Food Waste Classification, Alejandro Zachary Espinoza

Dissertations and Theses

Food wastage is a problem that affects all demographics and regions of the world. Each year, approximately one-third of food produced for human consumption is thrown away. In an effort to track and reduce food waste in the commercial sector, some companies utilize third party devices which collect data to analyze individual contributions to the global problem. These devices track the type of food wasted (such as vegetables, fruit, boneless chicken, pasta) along with the weight. Some devices also allow the user to leave the food in a kitchen container while it is weighed, so the container weight must also …


A Resource Constrained Shortest Paths Approach To Reducing Personal Pollution Exposure, Elling Payne Jun 2019

A Resource Constrained Shortest Paths Approach To Reducing Personal Pollution Exposure, Elling Payne

REU Final Reports

As wildfires surge in frequency and impact in the Pacific Northwest, in tandem with increasingly traffic-choked roads, personal exposure to harmful airborne pollutants is a rising concern. Particularly at risk are school-age children, especially those living in disadvantaged communities near major motorways and industrial centers. Many of these children must walk to school, and the choice of route can effect exposure. Route-planning applications and frameworks utilizing computational shortest paths methods have been proposed which consider personal exposure with reasonable success, but few have focused on pollution exposure, and all have been limited in scalability or geographic scope. This paper addresses …


Development Of A Design Guideline For Pile Foundations Subjected To Liquefaction-Induced Lateral Spreading, Milad Souri, Arash Khosravifar May 2019

Development Of A Design Guideline For Pile Foundations Subjected To Liquefaction-Induced Lateral Spreading, Milad Souri, Arash Khosravifar

Student Research Symposium

Past earthquakes confirmed that seismically induced kinematic loads from soil lateral spreading and inertial loads from structure can cause severe damages to pile foundations. The research questions are:

  • How to combine inertial and kinematic loads in design of pile foundations in liquefied soil?
  • How the combination of inertia and kinematics changes with depth?
  • How this combination is affected by long-duration earthquakes?
  • How this combination affects inelastic demands in piles?


Exploring And Expanding The One-Pixel Attack, Umairullah Khan, Walt Woods, Christof Teuscher May 2019

Exploring And Expanding The One-Pixel Attack, Umairullah Khan, Walt Woods, Christof Teuscher

Student Research Symposium

In machine learning research, adversarial examples are normal inputs to a classifier that have been specifically perturbed to cause the model to misclassify the input. These perturbations rarely affect the human readability of an input, even though the model’s output is drastically different. Recent work has demonstrated that image-classifying deep neural networks (DNNs) can be reliably fooled with the modification of a single pixel in the input image, without knowledge of a DNN’s internal parameters. This “one-pixel attack” utilizes an iterative evolutionary optimizer known as differential evolution (DE) to find the most effective pixel to perturb, via the evaluation of …


Spectral Clustering For Electrical Phase Identification Using Advanced Metering Infrastructure Voltage Time Series, Logan Blakely Jan 2019

Spectral Clustering For Electrical Phase Identification Using Advanced Metering Infrastructure Voltage Time Series, Logan Blakely

Dissertations and Theses

The increasing demand for and prevalence of distributed energy resources (DER) such as solar power, electric vehicles, and energy storage, present a unique set of challenges for integration into a legacy power grid, and accurate models of the low-voltage distribution systems are critical for accurate simulations of DER. Accurate labeling of the phase connections for each customer in a utility model is one area of grid topology that is known to have errors and has implications for the safety, efficiency, and hosting capacity of a distribution system. This research presents a methodology for the phase identification of customers solely using …