Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal Aug 2019

Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal

Publications

Bacterial concrete has become one of the most promising self-healing alternatives due to its capability to seal crack widths through microbial induced calcite precipitation (MICP). In this study, two bacterial strains were embedded at varying dosages (by weight of cement) in concrete. Beam specimens were used to identify the maximum crack-sealing efficiency, while cylinder samples were used to determine their effects on the intrinsic mechanical properties, as well as its stiffness recovery over time after inducing damage. The concrete specimens were cured in wet-dry cycles to determine their feasibility in Region 6. The results showed that the specimen groups with …


Evaluating Shallow Mixing Protocols As Application Methods For Microbial Induced Calcite Precipitation Targeting Expansive Soil Treatment, Bhaskar C. S. Chittoori, Tasria Rahman, Malcolm Burbank, Arif Ali Baig Moghal Jan 2019

Evaluating Shallow Mixing Protocols As Application Methods For Microbial Induced Calcite Precipitation Targeting Expansive Soil Treatment, Bhaskar C. S. Chittoori, Tasria Rahman, Malcolm Burbank, Arif Ali Baig Moghal

Civil Engineering Faculty Publications and Presentations

Expansive soils, also known as swell-shrink soils, undergo substantial volumetric changes due to moisture fluctuations from seasonal variations. These volumetric changes cause millions of dollars in damages annually. Microbial Induced Calcite Precipitation (MICP) is a promising soil improvement technique, which uses urease producing bacteria to precipitate calcium carbonate. In this study, a stabilization alternative for expansive soils was studied using MICP. Specifically, indigenous bacteria were stimulated by mixing enrichment and cementation solutions with expansive natural soils to precipitate calcium carbonate and make soil stronger and less expansive. This study examined three expansive soils with varying plasticity and mineralogical characteristics. Two …