Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Field Research Report: Results From The Enreec Vri Field For The 2021, 2022, And 2023 Crop Seasons, Derek M. Heeren, Ali T. Mohammed, Eric Wilkening, Christopher M. U. Neale, Alan L. Boldt, Ankit Chandra, Precious Nneka Amori, Ivo Z. Goncalves, Yeyin Shi, Guillermo R. Balboa Mar 2024

Field Research Report: Results From The Enreec Vri Field For The 2021, 2022, And 2023 Crop Seasons, Derek M. Heeren, Ali T. Mohammed, Eric Wilkening, Christopher M. U. Neale, Alan L. Boldt, Ankit Chandra, Precious Nneka Amori, Ivo Z. Goncalves, Yeyin Shi, Guillermo R. Balboa

Department of Biological Systems Engineering: Conference Presentations and White Papers

Long-term irrigation management research has been conducted from 2014 to 2023 for corn and soybean at the Eastern Nebraska Research, Extension, and Education Center (ENREEC) Variable Rate Irrigation (VRI) Field located in subhumid east-central Nebraska (in the Lower Platte North Natural Resources District). The objective of this report was to present the overall results from the VRI Field for 2021 to 2023. Across the three growing seasons, there were the following irrigation treatments: Best Management Practice (BMP), 50% BMP, 125% BMP, rainfed, Spatial ET Modeling Interface (SETMI), SDD1, SDD2, machine-learning-based Cyber-Physical System (CPS), a student team recommended rate, and industry …


Development Of A Machine Learning System For Irrigation Decision Support With Disparate Data Streams, Eric Wilkening Dec 2023

Development Of A Machine Learning System For Irrigation Decision Support With Disparate Data Streams, Eric Wilkening

Department of Biological Systems Engineering: Dissertations and Theses

In recent years, advancements in irrigation technologies have led to increased efficiency in irrigation applications, encompassing the adoption of practices that utilize data-driven irrigation scheduling and leveraging variable rate irrigation (VRI). These technological improvements have the potential to reduce water withdrawals and diversions from both groundwater and surface water sources. However, it is vital to recognize that improved application efficiency does not necessarily equate to increased water availability for future or downstream use. This is particularly crucial in the context of consumptive water use, which refers to water consumed and not returned to the local or sub-regional watershed, representing a …


Development Of A Scalable Edge-Cloud Computing Based Variable Rate Irrigation Scheduling Framework, Eric J. Wilkening, Derek M. Heeren, Yeyin Shi, Abia Katimbo, Precious N. Amori, Guillermo R. Balboa, Laila A. Puntel, Kuan Zhang, Daran R. Rudnick Jul 2023

Development Of A Scalable Edge-Cloud Computing Based Variable Rate Irrigation Scheduling Framework, Eric J. Wilkening, Derek M. Heeren, Yeyin Shi, Abia Katimbo, Precious N. Amori, Guillermo R. Balboa, Laila A. Puntel, Kuan Zhang, Daran R. Rudnick

Department of Biological Systems Engineering: Conference Presentations and White Papers

Currently, variable-rate precision irrigation (VRI) scheduling methods require large amounts of data and processing time to accurately determine crop water demands and spatially process those demands into an irrigation prescription. Unfortunately, irrigated crops continue to develop additional water stress when the previously collected data is being processed. Machine learning is a helpful tool, but handling and transmitting large datasets can be problematic; more rural areas may not have access to necessary wireless data transmission infrastructure to support cloud interaction. The introduction of “edge-cloud” processing to agricultural applications has shown to be effective at increasing data processing speed and reducing the …


Toward Automated Irrigation Management With Integrated Crop Water Stress Index And Spatial Soil Water Balance, Sandeep Bhatti, Derek M. Heeren, Susan A. O’Shaughnessy, Christopher M. U. Neale, Jacob Larue, Steve Melvin, Eric Wilkening, Geng Bai May 2023

Toward Automated Irrigation Management With Integrated Crop Water Stress Index And Spatial Soil Water Balance, Sandeep Bhatti, Derek M. Heeren, Susan A. O’Shaughnessy, Christopher M. U. Neale, Jacob Larue, Steve Melvin, Eric Wilkening, Geng Bai

Department of Biological Systems Engineering: Papers and Publications

Decision support systems intended for precision irrigation aim at reducing irrigation applications while optimizing crop yield to achieve maximum crop water productivity (CWP). These systems incorporate on-site sensor data, remote sensing inputs, and advanced algorithms with spatial and temporal characteristics to compute precise crop water needs. The availability of variable rate irrigation (VRI) systems enables irrigation applications at a sub-field scale. The combination of an appropriate VRI system along with a precise decision support system would be ideal for improved CWP. The objective of this study was to compare and evaluate two decision support systems in terms of seasonal applied …


Toward Automated Irrigation Management With Integrated Crop Water Stress Index And Spatial Soil Water Balance, Sandeep Bhatti, Derek M. Heeren, Susan A. O’Shaughnessy, Christopher M. U. Neale, Jacob Larue, Steve Melvin, Eric Wilkening, Geng Bai May 2023

Toward Automated Irrigation Management With Integrated Crop Water Stress Index And Spatial Soil Water Balance, Sandeep Bhatti, Derek M. Heeren, Susan A. O’Shaughnessy, Christopher M. U. Neale, Jacob Larue, Steve Melvin, Eric Wilkening, Geng Bai

Department of Biological Systems Engineering: Papers and Publications

Decision support systems intended for precision irrigation aim at reducing irrigation applications while optimizing crop yield to achieve maximum crop water productivity (CWP). These systems incorporate on-site sensor data, remote sensing inputs, and advanced algorithms with spatial and temporal characteristics to compute precise crop water needs. The availability of variable rate irrigation (VRI) systems enables irrigation applications at a sub-field scale. The combination of an appropriate VRI system along with a precise decision support system would be ideal for improved CWP. The objective of this study was to compare and evaluate two decision support systems in terms of seasonal applied …


A Methodology To Optimize Site-Specific Field Capacity And Irrigation Thresholds, Hemendra Kumar, Puneet Srivastava, Jasmeet Lamba, Bruno Lena, Efstathios Diamantopoulos, Brenda Ortiz, Bijoychandra Takhellambam, Guilherme Morata, Luca Bondesan Jan 2023

A Methodology To Optimize Site-Specific Field Capacity And Irrigation Thresholds, Hemendra Kumar, Puneet Srivastava, Jasmeet Lamba, Bruno Lena, Efstathios Diamantopoulos, Brenda Ortiz, Bijoychandra Takhellambam, Guilherme Morata, Luca Bondesan

Department of Biological Systems Engineering: Papers and Publications

The determination of field capacity (FC), irrigation thresholds, and irrigation amounts is characterized by site-specific soil hydraulic properties (SHPs). This study, conducted in two zones (zone 1 and zone 2) delineated based on soil, topography, and historical crop yield in Alabama (USA), focused on determining zone-specific FC using negligible drainage flux (qfc) criterion. The HYDRUS-1D model was used to optimize zone-specific SHPs using measured soil matric potential (h). The zone-specific FCs were determined using optimized and raw SHPs at 0.01 cm/day as qfc. The results showed that the optimized FC at qfc …


Site-Specific Irrigation Management In A Sub-Humid Climate Using A Spatial Evapotranspiration Model With Satellite And Airborne Imagery, Sandeep Bhatti, Derek M. Heeren, J. Burdette Barker, Christopher M. U. Neale, Wayne Woldt, Mitchell S. Maguire, Daran Rudnick Jan 2020

Site-Specific Irrigation Management In A Sub-Humid Climate Using A Spatial Evapotranspiration Model With Satellite And Airborne Imagery, Sandeep Bhatti, Derek M. Heeren, J. Burdette Barker, Christopher M. U. Neale, Wayne Woldt, Mitchell S. Maguire, Daran Rudnick

Department of Biological Systems Engineering: Papers and Publications

Variable Rate Irrigation (VRI) considers spatial variability in soil and plant characteristics to optimize irrigation management in agricultural fields. The advent of unmanned aircraft systems (UAS) creates an opportunity to utilize high-resolution (spatial and temporal) imagery into irrigation management due to decreasing costs, ease of operation, and reduction of regulatory constraints. This research aimed to evaluate the use of UAS data for VRI, and to quantify the potential of VRI in terms of relative crop and water response. Irrigation treatments were: (1) VRI using Landsat imagery (VRI-L), (2) VRI using UAS imagery (VRI-U), (3) uniform (U), and (4) rainfed (R). …


Fuzzy Control System For Variable Rate Irrigation Using Remote Sensing, Willians Ribeiro Mendes, Fábio Meneghetti U. Araújo, Ritaban Dutta, Derek M. Heeren Jan 2019

Fuzzy Control System For Variable Rate Irrigation Using Remote Sensing, Willians Ribeiro Mendes, Fábio Meneghetti U. Araújo, Ritaban Dutta, Derek M. Heeren

Department of Biological Systems Engineering: Papers and Publications

Variable rate irrigation (VRI) is the capacity to spatially vary the depth of water application in a field to handle different types of soils, crops, and other conditions. Precise management zones must be developed to efficiently apply variable rate technologies. However, there is no universal method to determine management zones. Using speed control maps for the central pivot is one option. Thus, this study aims to develop an intelligent fuzzy inference system based on precision irrigation knowledge, i.e., a system that can create prescriptive maps to control the rotation speed of the central pivot. Satellite images are used in this …


Variable Rate Irrigation Using A Spatial Evapotranspiration Model With Remote Sensing Imagery And Soil Water Content Measurements, Sandeep Bhatti Dec 2018

Variable Rate Irrigation Using A Spatial Evapotranspiration Model With Remote Sensing Imagery And Soil Water Content Measurements, Sandeep Bhatti

Department of Biological Systems Engineering: Dissertations and Theses

Variable rate irrigation may help in intensification of agriculture by producing more yield per unit inputs. Real time spatial information about water balance components is important for designing VRI prescription maps. This work involved use of a spatial evapotranspiration model for studying spatial variability in an agricultural field at the Eastern Nebraska Research and Extension Center near Mead, Nebraska. Imagery from unmanned aerial systems and Landsat were used as input for the spatial evapotranspiration model. Other inputs into the model were soil water content measurements from neutron probes, weather data, crop data, previous irrigation prescriptions, and soil properties for the …


Evaluation Of Variable Rate Irrigation Using A Remote-Sensing-Based Model, John Burdette Barker, Derek M. Heeren, Christopher M.U. Neale, Daran Rudnick Jan 2018

Evaluation Of Variable Rate Irrigation Using A Remote-Sensing-Based Model, John Burdette Barker, Derek M. Heeren, Christopher M.U. Neale, Daran Rudnick

Department of Biological Systems Engineering: Papers and Publications

Improvements in soil water balance modeling can be beneficial for optimizing irrigation management to account for spatial variability in soil properties and evapotranspiration (ET). A remote-sensing-based ET and water balance model was tested for irrigation management in an experiment at two University of Nebraska-Lincoln research sites located near Mead and Brule, Nebraska. Both fields included a center pivot equipped with variable rate irrigation (VRI). The study included maize in 2015 and 2016 and soybean in 2016 at Mead, and maize in 2016 at Brule, for a total of 210 plot-years. Four irrigation treatments were applied at Mead, including: VRI based …


Field Characterization Of Field Capacity And Root Zone Available Water Capacity For Variable Rate Irrigation, Tsz Him Lo, Derek M. Heeren, Luciano Mateos, Joe D. Luck, Derrel L. Martin, Keith A. Miller, J. Burdette Barker, Tim M. Shaver Jan 2017

Field Characterization Of Field Capacity And Root Zone Available Water Capacity For Variable Rate Irrigation, Tsz Him Lo, Derek M. Heeren, Luciano Mateos, Joe D. Luck, Derrel L. Martin, Keith A. Miller, J. Burdette Barker, Tim M. Shaver

Department of Biological Systems Engineering: Papers and Publications

Accurate spatial characterization of field capacity (FC) and root zone available water capacity (R) can enhance site-specific management practices—such as variable rate irrigation—to lower input costs, reduce contaminant leaching, and/or improve crop yield. Measuring the volumetric water content after wet soils drain following substantial precipitation can provide a field estimate of FC. The average FC (FCa) for the managed root zone was determined at thirty-two locations in a topographically variable field in south central Nebraska. The difference between FC and permanent wilting point estimates—computed using a pedotransfer function—yielded values for R for the observation locations. Sampling locations were …


Soil Water Content Monitoring For Irrigation Management: A Geostatistical Analysis, J. Burdette Barker, Trenton E. Franz, Derek M. Heeren, Christopher M.U. Neale, Joe D. Luck Jan 2017

Soil Water Content Monitoring For Irrigation Management: A Geostatistical Analysis, J. Burdette Barker, Trenton E. Franz, Derek M. Heeren, Christopher M.U. Neale, Joe D. Luck

Department of Biological Systems Engineering: Papers and Publications

With the increasing attention to site-specific or variable rate irrigation management, it is helpful to reconsider the quantity and placement of soil water monitoring locations in this context. Volumetric soil water content (θv) was monitored using a neutron probe (NP) at 72 locations in a center pivot irrigated field in eastern Nebraska. Variance reduction and temporal stability analyses were performed on θv from shallow (∼top 46 cm) and full profile (∼122 cm) readings for four monitoring cycles in the 2015 growing season and 2016 preseason. Eleven additional cycles were included for a subset of the data for …


Potential Irrigation Reductions From Increasing Precipitation Utilization With Variable Rate Irrigation, Tsz Him Lo, Derek M. Heeren, Luciano Mateos, Joe D. Luck, Derrel L. Martin, Dean E. Eisenhauer Nov 2015

Potential Irrigation Reductions From Increasing Precipitation Utilization With Variable Rate Irrigation, Tsz Him Lo, Derek M. Heeren, Luciano Mateos, Joe D. Luck, Derrel L. Martin, Dean E. Eisenhauer

Department of Biological Systems Engineering: Papers and Publications

Much of the previous research quantifying the potential benefits of variable rate irrigation (VRI) consists of case studies with simulations using data from small numbers of intensely sampled fields. In this study, an indicator of the amount of root zone available water capacity that is unutilized by uniform rate irrigation was calculated for 49,224 center pivot irrigated fields in Nebraska using publicly available data exclusively. Based on the values of this indicator, potential seasonal irrigation reductions from increasing precipitation utilization with VRI were estimated to be high for a small fraction of analyzed center pivots but low on a regional …


Quantification Of Variable Rate Irrigation Benefits And Spatial Variability In Root Zone Water Holding Capacity, Tsz Him Lo Aug 2015

Quantification Of Variable Rate Irrigation Benefits And Spatial Variability In Root Zone Water Holding Capacity, Tsz Him Lo

Department of Biological Systems Engineering: Dissertations and Theses

Variable rate irrigation (VRI) investment decisions require field-specific knowledge of benefits. The objective of this research was to help producers and consultants consider and quantify potential benefits of VRI. First, a conceptual model was developed for evaluating the public and/or private gain from adopting VRI where irrigation water supply is non-restrictive. Potential benefits were classified into three categories and were attributed to ten reasons. In the Central Plains at current prices, a small improvement in corn (maize) yield would make a large contribution to VRI profitability. Second, the potential irrigation withdrawal reduction from adapting VRI to spatial heterogeneity of root …


Estimating Potential Water Pump Reductions Based On Soil Water Content, Geospatial Data Layers, And Variable Rate Irrigation (Vri) Pivot Control Resolution, Keith A. Miller Aug 2014

Estimating Potential Water Pump Reductions Based On Soil Water Content, Geospatial Data Layers, And Variable Rate Irrigation (Vri) Pivot Control Resolution, Keith A. Miller

Department of Biological Systems Engineering: Dissertations and Theses

Increasing concern for sustainable water use has the agriculture industry working toward higher efficiency use of irrigation water. The average irrigation water use efficiency throughout the United States is 45%, which is extremely poor. Advancements in crop management have continued to allow producers to know more about the conditions in their field from nutrient management and pest control, to understanding yield spatially.

Recent mechanical advancements have improved the capabilities of center pivot irrigation systems to water various depths throughout the field. This technology is known as variable rate irrigation (VRI). With VRI comes a whole new strategy for irrigation. Advancements …