Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Dna Based Carbon Nanotube Porphyrin Nanohybrids Molecular Recognization And Regeneration, Molly M. Riccitelli, Hanyu Zhang, Jong Hyun Choi Oct 2013

Dna Based Carbon Nanotube Porphyrin Nanohybrids Molecular Recognization And Regeneration, Molly M. Riccitelli, Hanyu Zhang, Jong Hyun Choi

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the search to improve solar cells, scientists are exploring new materials that will provide better current transfer. One material that has emerged as a strong contender is the single walled carbon nanotube (SWNT). Current DNA-SWNT based films combined with chromophores have poor operational lifetimes compared to commercial solar cells. Once exposed to light the chromophore begins to degrade, eventually rendering the solar cell unusable. To solve this problem, we used a method involving multiple steps. First we found which DNA sequences formed structures around the SWNT that could hold the most chromophores by using a spectrophotometer to test the …


Multi-Factorial Stability Study Of Metabolites, Ruijun Zheng, John A. Morgan Oct 2013

Multi-Factorial Stability Study Of Metabolites, Ruijun Zheng, John A. Morgan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Previous research done on metabolites has found that high energy compounds like adenosine triphosphate(ATP), nicotinamide adenine dinucleotide phosphate reduced (NADPH) or nicotinamide adenine dinucleotide reduced (NADH) are unstable in cell extracts at relatively high temperature and acidic condition. The multifactorial stability study of metabolites enables us to verify the best condition of storage for these energy compounds and sugar phosphates, as well as to strengthen the understanding of metabolism in biological study. As the most solvents for high performance liquid chromatography (HPLC) are acidic and unfavorable for these energy compounds, it is necessary to perform a detailed study about …


Tobacco Mosaic Virus Implemented As An Interfacial Layer In Organic Photovoltaic Cells, Monica D. Del Real, Bryan Boudouris Oct 2013

Tobacco Mosaic Virus Implemented As An Interfacial Layer In Organic Photovoltaic Cells, Monica D. Del Real, Bryan Boudouris

The Summer Undergraduate Research Fellowship (SURF) Symposium

Organic photovoltaics (OPVs) are flexible, light weight, and economical to produce due to low processing temperatures, solution processing, and print fabrication. This makes them optimal for a wide range of applications. However, the efficiencies of OPVs are currently not high enough for them to be viable in the market or to be able to compete with inorganic photovoltaics. Therefore the integration of new materials and methods into OPVs in order to increase their efficiency is a vital field. One way to increase the efficiency of OPVs is to increase the surface area in-between layers to allow for enhanced electron transport. …


Biomarkers For Vincristine-Induced Neuropathy, Danni Li, Jayachandran Devaraj, Doraiswami Ramkrishna Oct 2013

Biomarkers For Vincristine-Induced Neuropathy, Danni Li, Jayachandran Devaraj, Doraiswami Ramkrishna

The Summer Undergraduate Research Fellowship (SURF) Symposium

Vincristine is a vinca alkaloid, a commonly used chemotherapy drug for treating leukemia, lymphoma, multiple myeloma and some pediatric cancers. Its major dose-limiting side effect is peripheral neuropathy. The current dosing of “standard-dose-for-all” ignores the genetic and phenotypic variations among different patients, and causes severe neuropathy in some patients while ineffectively treats the others. In the present study, we aim to discover novel biomarkers involved in vincristine-induced neuropathy and identify patients with varied metabolic characteristics. Thus treatment can be tailored accordingly to improve outcomes of vincristine treatment. Pre-dose and post-dose serum samples were collected from two groups of patients (low …


Adhesive Elastomeric Proteins, Haefa Mansour, Julie Liu Oct 2013

Adhesive Elastomeric Proteins, Haefa Mansour, Julie Liu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Sutures and staples commonly used to close surgical wounds tend to be much stiffer than the surrounding tissue, often resulting in external tissue damage. Surgical adhesives provide a promising alternative to these sutures and staples. Ideal surgical adhesives are biocompatible, able to set well and remain sticky in moist conditions, possess strong adhesive and cohesive properties, and exhibit mechanical properties that mimic those of the surrounding tissue. Unfortunately, the adhesives available today are unable to satisfactorily meet all of these criteria. We are utilizing protein engineering techniques to design, create, and test a new surgical adhesive that combines the adhesive …