Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Finite Element Simulation Of Wind Turbine Aerodynamics: Validation Study Using Nrel Phase Vi Experiment, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs Mar 2013

Finite Element Simulation Of Wind Turbine Aerodynamics: Validation Study Using Nrel Phase Vi Experiment, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs

Ming-Chen Hsu

A validation study using the National Renewable Energy Laboratory (NREL) Phase VI wind turbine is presented. The aerodynamics simulations are performed using the finite element arbitrary Lagrangian–Eulerian–variational multiscale formulation augmented with weakly enforced essential boundary conditions. In all cases, the rotor is assumed to be rigid and its rotation is prescribed. The rotor-only simulations are performed for a wide range of wind conditions, and the computational results compare favorably with the experimental findings in all cases. The sliding-interface method is adopted for the simulation of the full wind turbine configuration. The full-wind-turbine simulations capture the blade–tower interaction effect, and the …


Blended Isogeometric Shells, D. J. Benson, S. Hartmann, Y. Bazilevs, Ming-Chen Hsu, T.J.R. Hughes Mar 2013

Blended Isogeometric Shells, D. J. Benson, S. Hartmann, Y. Bazilevs, Ming-Chen Hsu, T.J.R. Hughes

Ming-Chen Hsu

We propose a new isogeometric shell formulation that blends Kirchhoff–Love theory with Reissner–Mindlin theory. This enables us to reduce the size of equation systems by eliminating rotational degrees of freedom while simultaneously providing a general and effective treatment of kinematic constraints engendered by shell intersections, folds, boundary conditions, the merging of NURBS patches, etc. We illustrate the blended theory’s performance on a series of test problems.


Fluid–Structure Interaction Modeling Of Wind Turbines: Simulating The Full Machine, Ming-Chen Hsu, Yuri Bazilevs Dec 2012

Fluid–Structure Interaction Modeling Of Wind Turbines: Simulating The Full Machine, Ming-Chen Hsu, Yuri Bazilevs

Ming-Chen Hsu

In this paper we present our aerodynamics and fluid–structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation of the “full machine”). For the interaction of wind and flexible blades we employ a nonmatching interface discretization approach, where the aerodynamics is computed using a low-order finite-element-based ALE-VMS technique, while the rotor blades are modeled as thin composite shells discretized using NURBS-based isogeometric analysis (IGA). We find that coupling FEM and IGA in this manner gives a good combination of efficiency, …


Isogeometric Fluid–Structure Interaction Analysis With Emphasis On Non-Matching Discretizations, And With Application To Wind Turbines, Y. Bazilevs, Ming-Chen Hsu, M. A. Scott Dec 2012

Isogeometric Fluid–Structure Interaction Analysis With Emphasis On Non-Matching Discretizations, And With Application To Wind Turbines, Y. Bazilevs, Ming-Chen Hsu, M. A. Scott

Ming-Chen Hsu

In this paper we develop a framework for fluid–structure interaction (FSI) modeling and simulation with emphasis on isogeometric analysis (IGA) and non-matching fluid–structure interface discretizations. We take the augmented Lagrangian approach to FSI as a point of departure. Here the Lagrange multiplier field is defined on the fluid–structure interface and is responsible for coupling of the two subsystems. Thus the FSI formulation does not rely on the continuity of the underlying function spaces across the fluid–structure interface in order to produce the correct coupling conditions between the fluid and structural subdomains. However, in deriving the final FSI formulation the interface …


Wind Turbine Aerodynamics Using Ale–Vms: Validation And The Role Of Weakly Enforced Boundary Conditions, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs Oct 2012

Wind Turbine Aerodynamics Using Ale–Vms: Validation And The Role Of Weakly Enforced Boundary Conditions, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs

Ming-Chen Hsu

In this article we present a validation study involving the full-scale NREL Phase VI two-bladed wind turbine rotor. The ALE–VMS formulation of aerodynamics, based on the Navier–Stokes equations of incompressible flows, is employed in conjunction with weakly enforced essential boundary conditions. We find that the ALE–VMS formulation using linear tetrahedral finite elements is able to reproduce experimental data for the aerodynamic (low-speed shaft) torque and cross-section pressure distribution of the NREL Phase VI rotor. We also find that weak enforcement of essential boundary conditions is critical for obtaining accurate aerodynamics results on relatively coarse boundary layer meshes. The proposed numerical …


Ale-Vms And St-Vms Methods For Computer Modeling Of Wind-Turbine Rotor Aerodynamics And Fluid–Structure Interaction, Yuri Bazilevs, Ming-Chen Hsu, Kenji Takizawa, Tayfun E. Tezduyar Jul 2012

Ale-Vms And St-Vms Methods For Computer Modeling Of Wind-Turbine Rotor Aerodynamics And Fluid–Structure Interaction, Yuri Bazilevs, Ming-Chen Hsu, Kenji Takizawa, Tayfun E. Tezduyar

Ming-Chen Hsu

We provide an overview of the Arbitrary Lagrangian–Eulerian Variational Multiscale (ALE-VMS) and Space–Time Variational Multiscale (ST-VMS) methods we have developed for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction (FSI). The related techniques described include weak enforcement of the essential boundary conditions, Kirchhoff–Love shell modeling of the rotor-blade structure, NURBS-based isogeometric analysis, and full FSI coupling. We present results from application of these methods to computer modeling of NREL 5MW and NREL Phase VI wind-turbine rotors at full scale, including comparison with experimental data.


3d Simulation Of Wind Turbine Rotors At Full Scale. Part Ii: Fluid–Structure Interaction Modeling With Composite Blades, Y. Bazilevs, Ming-Chen Hsu, J. Kiendel, R. Wuchner, K. U. Bletzigner Oct 2011

3d Simulation Of Wind Turbine Rotors At Full Scale. Part Ii: Fluid–Structure Interaction Modeling With Composite Blades, Y. Bazilevs, Ming-Chen Hsu, J. Kiendel, R. Wuchner, K. U. Bletzigner

Ming-Chen Hsu

In this two-part paper, we present a collection of numerical methods combined into a single framework, which has the potential for a successful application to wind turbine rotor modeling and simulation. In Part 1 of this paper we focus on: 1. The basics of geometry modeling and analysis-suitable geometry construction for wind turbine rotors; 2. The fluid mechanics formulation and its suitability and accuracy for rotating turbulent flows; 3. The coupling of air flow and a rotating rigid body. In Part 2, we focus on the structural discretization for wind turbine blades and the details of the fluid–structure interaction computational …


High-Performance Computing Of Wind Turbine Aerodynamics Using Isogeometric Analysis, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs Oct 2011

High-Performance Computing Of Wind Turbine Aerodynamics Using Isogeometric Analysis, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs

Ming-Chen Hsu

In this article we present a high-performance computing framework for advanced flow simulation and its application to wind energy based on the residual-based variational multiscale (RBVMS) method and isogeometric analysis. The RBVMS formulation and its suitability and accuracy for turbulent flow in a moving domain are presented. Particular emphasis is placed on the parallel implementation of the methodology and its scalability. Two challenging flow cases were considered: the turbulent Taylor–Couette flow and the NREL 5 MW offshore baseline wind turbine rotor at full scale. In both cases, flow quantities of interest from the simulation results compare favorably with the reference …


3d Simulation Of Wind Turbine Rotors At Full Scale. Part I: Geometry Modeling And Aerodynamics, Y. Bazilevs, Ming-Chen Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, T. E. Tezduyar Jan 2011

3d Simulation Of Wind Turbine Rotors At Full Scale. Part I: Geometry Modeling And Aerodynamics, Y. Bazilevs, Ming-Chen Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, T. E. Tezduyar

Ming-Chen Hsu

In this two-part paper we present a collection of numerical methods combined into a single framework, which has the potential for a successful application to wind turbine rotor modeling and simulation. In Part 1 of this paper we focus on: 1. The basics of geometry modeling and analysis-suitable geometry construction for wind turbine rotors; 2. The fluid mechanics formulation and its suitability and accuracy for rotating turbulent flows; 3. The coupling of air flow and a rotating rigid body. In Part 2 we focus on the structural discretization for wind turbine blades and the details of the fluid–structure interaction computational …


A Generalized Finite Element Formulation For Arbitrary Basis Functions: From Isogeometric Analysis To Xfem, D. J. Benson, Y. Bazilevs, E. Deluycker, Ming-Chen Hsu, M. Scott, T. J. R. Hughes, T. Belytschko Aug 2010

A Generalized Finite Element Formulation For Arbitrary Basis Functions: From Isogeometric Analysis To Xfem, D. J. Benson, Y. Bazilevs, E. Deluycker, Ming-Chen Hsu, M. Scott, T. J. R. Hughes, T. Belytschko

Ming-Chen Hsu

Many of the formulations of current research interest, including iosogeometric methods and the extended finite element method, use nontraditional basis functions. Some, such as subdivision surfaces, may not have convenient analytical representations. The concept of an element, if appropriate at all, no longer coincides with the traditional definition. Developing a new software for each new class of basis functions is a large research burden, especially, if the problems involve large deformations, non-linear materials, and contact. The objective of this paper is to present a method that separates as much as possible the generation and evaluation of the basis functions from …


The Bending Strip Method For Isogeometric Analysis Of Kirchhoff–Love Shell Structures Comprised Of Multiple Patches, J. Kiendel, Y. Bazilevs, Ming-Chen Hsu, R. Wuchner, K. U. Bletzigner Aug 2010

The Bending Strip Method For Isogeometric Analysis Of Kirchhoff–Love Shell Structures Comprised Of Multiple Patches, J. Kiendel, Y. Bazilevs, Ming-Chen Hsu, R. Wuchner, K. U. Bletzigner

Ming-Chen Hsu

In this paper we present an isogeometric formulation for rotation-free thin shell analysis of structures comprised of multiple patches. The structural patches are C1- or higher-order continuous in the interior, and are joined with C0-continuity. The Kirchhoff–Love shell theory that relies on higher-order continuity of the basis functions is employed in the patch interior as presented in Kiendl et al. [36]. For the treatment of patch boundaries, a method is developed in which strips of fictitious material with unidirectional bending stiffness and zero membrane stiffness are added at patch interfaces. The direction of bending stiffness is chosen to be transverse …


Self-Assembly Of Colloidal Particles From Evaporating Droplets: Role Of Dlvo Interactions And Proposition Of A Phase Diagram, Rajneesh Bhardwaj, Xiaohua Fang, Ponisseril Somasundaran, Daniel Attinger Mar 2010

Self-Assembly Of Colloidal Particles From Evaporating Droplets: Role Of Dlvo Interactions And Proposition Of A Phase Diagram, Rajneesh Bhardwaj, Xiaohua Fang, Ponisseril Somasundaran, Daniel Attinger

Daniel Attinger

The shape of deposits obtained from drying drops containing colloidal particles matters for technologies such as inkjet printing, microelectronics, and bioassay manufacturing. In this work, the formation of deposits during the drying of nanoliter drops containing colloidal particles is investigated experimentally with microscopy and profilometry, and theoretically with an in-house finite-element code. The system studied involves aqueous drops containing titania nanoparticles evaporating on a glass substrate. Deposit shapes from spotted drops at different pH values are measured using a laser profilometer. Our results show that the pH of the solution influences the dried deposit pattern, which can be ring-like or …


Improving Stability Of Stabilized And Multiscale Formulations In Flow Simulations At Small Time Steps, Ming-Chen Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, T.J.R. Hughes Feb 2010

Improving Stability Of Stabilized And Multiscale Formulations In Flow Simulations At Small Time Steps, Ming-Chen Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, T.J.R. Hughes

Ming-Chen Hsu

The objective of this paper is to show that use of the element-vector-based definition of stabilization parameters, introduced in [T.E. Tezduyar, Computation of moving boundaries and interfaces and stabilization parameters, Int. J. Numer. Methods Fluids 43 (2003) 555–575; T.E. Tezduyar, Y. Osawa, Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Engrg. 190 (2000) 411–430], circumvents the well-known instability associated with conventional stabilized formulations at small time steps. We describe formulations for linear advection–diffusion and incompressible Navier–Stokes equations and test them on three benchmark problems: advection of an L-shaped discontinuity, laminar flow in a square …


Isogeometric Shell Analysis: The Reissner–Mindlin Shell, D. J. Benson, Y. Bazilevs, Ming-Chen Hsu, T.J.R. Hughes Jan 2010

Isogeometric Shell Analysis: The Reissner–Mindlin Shell, D. J. Benson, Y. Bazilevs, Ming-Chen Hsu, T.J.R. Hughes

Ming-Chen Hsu

A Reissner–Mindlin shell formulation based on a degenerated solid is implemented for NURBS-based isogeometric analysis. The performance of the approach is examined on a set of linear elastic and nonlinear elasto-plastic benchmark examples. The analyses were performed with LS-DYNA, an industrial, general-purpose finite element code, for which a user-defined shell element capability was implemented. This new feature, to be reported on in subsequent work, allows for the use of NURBS and other non-standard discretizations in a sophisticated nonlinear analysis framework.


Brittle Composites Modeling: Compazisons With Mosi2/Zro2, S.P. Chen, Richard Alan Lesar, A. D. Rollett Nov 1993

Brittle Composites Modeling: Compazisons With Mosi2/Zro2, S.P. Chen, Richard Alan Lesar, A. D. Rollett

Richard Alan Lesar

We have calculated the mechanical properties of brittle composites with spring-network (SN) model. The composites that we studied involve the transformation toughening effects and the accompanying micro-cracking. Our simulation results are consistent with experiments of MoSi2 toughened with ZrO2. By monitoring the stress changes due to the transformation and micro-cracking we are able to separate, for the first time, the contributions from these two competing effects. We also found that the fracture toughness of the composite increases as the modulus, interfacial cohesion of particle increases.


Equation Of State Of Fluid Nh3 From P-V-T And Ultrasound Measurements To 12 Kbar, R. L. Mills, D. H. Lienbenberg, Richard Alan Lesar, Ph. Pruzan Jan 1983

Equation Of State Of Fluid Nh3 From P-V-T And Ultrasound Measurements To 12 Kbar, R. L. Mills, D. H. Lienbenberg, Richard Alan Lesar, Ph. Pruzan

Richard Alan Lesar

A piston-cylinder apparatus was used to measure the pressure, volume, temperature, and ultrasonic velocity (P,V,T,u) of fluid NH3 from 195 to 320 K at pressures up to 12 kbar. Over 1200 sets of P-V-T-u and P-V-T data were fitted to a Tait-type equation of state (EOS) by non-linear least-squares minimization. With quadratic terms in T for the two fitted parameters, the rms deviation is ± 0.2% in V and ± 0.9% in u, which is comparable to the experimental error. The simple Tait EOS is useful over the entire fluid range between the vaporization and melting curves up to T …