Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Engineering

A Decoupled Engineering Methodology For Accurate Prediction Of Ablative Surface Boundary Conditions In Thermal Protection Systems, Justin Cooper Jan 2022

A Decoupled Engineering Methodology For Accurate Prediction Of Ablative Surface Boundary Conditions In Thermal Protection Systems, Justin Cooper

Theses and Dissertations--Mechanical Engineering

The main objective of the present work is to demonstrate a method for prediction of aerothermal environments in the engineering design of hypersonic vehicles as an alternative to the current heritage method. Flat plate and stagnation point boundary layer theory require multiple assumptions to establish the current engineering paradigm. Chief among these assumptions is the similarity between mass and heat transfer. Origins of these assumptions are demonstrated and their relationship to conservative engineering design is analyzed, as well as conditions where they possibly break down. An alternative approach for assessing aerothermal environments from the fluid domain is presented, which permits …


Kentucky Re-Entry Universal Payload System (Krups): Hypersonic Re-Entry Flight, John Daniel Schmidt Jan 2022

Kentucky Re-Entry Universal Payload System (Krups): Hypersonic Re-Entry Flight, John Daniel Schmidt

Theses and Dissertations--Mechanical Engineering

The Kentucky Re-entry Universal Payload System (KRUPS) is a small capsule designed as a technology testbed for re-entry experiments. For its first incarnation, KRUPS has been designed to test Thermal Protection Systems (TPS) and instruments in re-entry flights. Because of the unique environment a vehicle undergoes during re-entry, there is a high-demand for experimental data from re-entry experiments. KRUPS has been developed at the University of Kentucky (UK) over the past seven years to meet this demand. After completing sub-orbital campaigns, the first KRUPS hypersonic re-entry mission was attempted. The mission involved building three 11-inch diameter capsules each outfitted with …


Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Dec 2021

Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The spectral radiative heat flux could impact the material response. In order to evaluate it, a coupling scheme between KATS - MR and P1 approximation model of radiation transfer equation (RTE) is constructed and used. A Band model is developed that divides the spectral domain into small bands of unequal widths. Two verification studies are conducted: one by comparing the simulation computed by the Band model with pure conduction results and the other by comparing with similar models of RTE. The comparative results from the verification studies indicate that the Band model is computationally efficient and can be used to …


Modeling Thin Layers In Material Response Solvers, Christen Setters Jan 2021

Modeling Thin Layers In Material Response Solvers, Christen Setters

Theses and Dissertations--Mechanical Engineering

Thermal Protection Systems (TPS) are a necessary component for atmospheric entry. Most TPS contain thin layers of various materials such as ceramic coatings, pore sealers and bonding agents. When modeling TPS, these thin layers are often neglected due to the difference in scale between the TPS (centimeters) and the thin layers (micrometers). In this study, a volume-averaging flux-conservation method is implemented in the governing equations of a finite volume material response code. The model proposes the addition of a volume and area fraction coefficient which utilizes a weighted-averaging between the amount of thin layer and heat shield material in a …


Development Of Universal Solver For High Enthalpy Flows Through Ablative Materials, Umran Duzel Jan 2020

Development Of Universal Solver For High Enthalpy Flows Through Ablative Materials, Umran Duzel

Theses and Dissertations--Mechanical Engineering

Atmospheric entry occurs at very high speeds which produces high temperature around the vehicle. Entry vehicles are thus equipped with Thermal Protection Systems which are usually made of ablative materials. This dissertation presents a new solver that models the atmospheric entry environment and the thermal protection systems. In this approach, both the external flow and the porous heat shield are solved using the same computational domain. The new solver uses the Volume Averaged Navier-Stokes Equations adapted for hypersonic non-equilibrium flow, and is thus valid for both domains. The code is verified using analytical problems, set of benchmarks and also a …


Experimental And Computational Analysis Of The Interaction Of Carbon And Silicon Ablation Products In Expanding Hypersonic Flows, Brian E. Donegan Dec 2018

Experimental And Computational Analysis Of The Interaction Of Carbon And Silicon Ablation Products In Expanding Hypersonic Flows, Brian E. Donegan

Theses and Dissertations

Thermal protection is required for vehicles entering planetary atmospheres to protect against the severe heating loads experienced. Characterization of candidate materials is often done utilizing plasma or arc-jet facilities, which provide steady-state testing of the thermal environments experienced during hypersonic flight, but do not correctly simulate hypersonic flowfields. Conversely, impulse facilities can reproduce flight velocities and enthalpies but have extremely short test times, prohibiting testing of thermal response. Modeling ablation and heating rates, particularly in the wake region, remains a significant challenge due to the complexity of the flowfield. To better understand this complex phenomenon and provide data to validate …


Thermo-Mechanical Coupling For Ablation, Rui Fu Jan 2018

Thermo-Mechanical Coupling For Ablation, Rui Fu

Theses and Dissertations--Mechanical Engineering

In order to investigate the thermal stress and expansion as well as the associated strain effect on material properties caused by high temperature and large temperature gradient, a two-way thermo-mechanical coupling solver is developed. This solver integrates a new structural response module to the Kentucky Aerothermodynamics and Thermal response System (KATS) framework. The structural solver uses a finite volume approach to solve either hyperbolic equations for transient solid mechanics, or elliptic equations for static solid mechanics. Then, based on the same framework, a quasi-static approach is used to couple the structural response and thermal response to estimate the thermal expansion …


Verification And Validation Studies For The Kats Aerothermodynamics And Material Response Solver, Olivia Schroeder Jan 2018

Verification And Validation Studies For The Kats Aerothermodynamics And Material Response Solver, Olivia Schroeder

Theses and Dissertations--Mechanical Engineering

Modeling the atmospheric entry of spacecraft is challenging because of the large number of physical phenomena that occur during the process. In order to study thermal protection systems, engineers rely on high fidelity solvers to provide accurate predictions of both the thermochemical environment surrounding the heat shield, and its material response. Therefore, it is necessary to guarantee that the numerical models are correctly implemented and thoroughly validated. In recent years, a high-fidelity modeling tool has been developed at the University of Kentucky for the purpose of studying atmospheric entry. The objective of this work is to verify and validate this …


Steady State Simulation Of Pyrolysis Gases In An Inductively Coupled Plasma Facility, Nicholas C. Martin Jan 2017

Steady State Simulation Of Pyrolysis Gases In An Inductively Coupled Plasma Facility, Nicholas C. Martin

Graduate College Dissertations and Theses

An important step in the more efficient use of PICA (Phenolic Impregnated Carbon Ablator) as a Thermal Protection System (TPS) material for spacecraft is the understanding of its pyrolysis mechanics. The gases released during pyrolysis and their subsequent interaction with the reactive plasma environment is not yet well understood. The surface recession of PICA as it ablates during testing only makes the study and characterization of the chemical reactions more difficult. To this end, a probe has been designed for this study to simulate, in steady state, the pyrolysis gases within the UVM 30kW Inductively Coupled Plasma (ICP) Torch Facility. …


Investigation Of Pyrolysis Gas Chemistry In An Inductively Coupled Plasma Facility, Corey Tillson Jan 2017

Investigation Of Pyrolysis Gas Chemistry In An Inductively Coupled Plasma Facility, Corey Tillson

Graduate College Dissertations and Theses

The pyrolysis mechanics of Phenolic Impregnated Carbon Ablators (PICA) makes it a valued material for use in thermal protection systems for spacecraft atmospheric re-entry. The present study of the interaction of pyrolysis gases and char with plasma gases in the boundary layer over PICA and its substrate, FiberForm, extends previous work on this topic that has been done in the UVM 30 kW Inductively Coupled Plasma (ICP) Torch Facility. Exposure of these material samples separately to argon, nitrogen, oxygen, air, and carbon dioxide plasmas, and combinations of said test gases provides insight into the evolution of the pyrolysis gases as …


Development Of Inverse Methods For Reconstruction Of Flight Environments On Ablators, A. Brandon Oliver Dec 2016

Development Of Inverse Methods For Reconstruction Of Flight Environments On Ablators, A. Brandon Oliver

Open Access Dissertations

Obtaining measurements of flight environments on ablative heatshields is both critical for spacecraft development and extremely challenging due to the harsh heating environment and surface recession. Thermocouples installed several millimeters below the surface are commonly used to measure the heatshield temperature response, but an ill-posed inverse heat conduction problem must be solved to reconstruct the surface heating environment from the embedded thermocouple measurements. The material properties of typical ablators make the reconstruction process more challenging when the measurements are deep, but measurements often must be located deep to allow for surface recession. Compounding the complexity of the surface reconstruction problem, …


Modeling Of Spallation Phenomenon In An Arc-Jet Environment, Raghava Sai Chaitanya Davuluri Jan 2015

Modeling Of Spallation Phenomenon In An Arc-Jet Environment, Raghava Sai Chaitanya Davuluri

Theses and Dissertations--Mechanical Engineering

Space vehicles, while entering the planetary atmosphere, experience high loads of heat. Ablative materials are commonly used for a thermal protection system, which undergo mass removal mechanisms to counter the heat rates. Spallation is one of the ablative processes, which is characterized by the ejection of solid particles from the material into the flow. Numerical codes that are used in designing the heat shields ignore this phenomenon. Hence, to evaluate the effectiveness of spallation phenomenon, a numerical model is developed to compute the dynamics and chemistry of the particles. The code is one-way coupled to a CFD code that models …


Test Case Series 3, Tom Van Eekelen, Alexandre Martin, Jean Lachaud, Daniele Bianchi Feb 2014

Test Case Series 3, Tom Van Eekelen, Alexandre Martin, Jean Lachaud, Daniele Bianchi

Ablation Workshop: Code Comparison

Numerical simulation of ablative-material response: code and model comparisons


Tacot V3.0, Jean Lachaud, Tom Van Eekelen, Daniele Bianchi, Alexandre Martin Jan 2014

Tacot V3.0, Jean Lachaud, Tom Van Eekelen, Daniele Bianchi, Alexandre Martin

Ablation Workshop: Code Comparison

No abstract provided.


Experimental And Numerical Study Of Carbon Fiber Oxidation, Francesco Panerai, Nagi N. Mansour, Jean Lachaud, Alexandre Martin Jan 2014

Experimental And Numerical Study Of Carbon Fiber Oxidation, Francesco Panerai, Nagi N. Mansour, Jean Lachaud, Alexandre Martin

Mechanical Engineering Faculty Publications

The oxidation at high Knudsen number of FiberForm® , the matrix material of NASA's Phenolic Impregnated Carbon Ablator, is investigated both experimentally and numerically. The experimental setup consists of a quartz tube through a clamshell heater. Mass loss and recession of carbon preform samples are measured at temperatures between 700 and 1300 K and pressures around 2000 Pa. A volume average fiber-scale oxidation model is used to model the setup and extract the effective reactivity of the material. New values for carbon fiber reactivity are suggested and discussed.


Coupled Flow Field Simulations Of Charring Ablators With Nonequilibrium Surface Chemistry, Hicham Alkandry, Iain D. Boyd, Alexandre Martin Jun 2013

Coupled Flow Field Simulations Of Charring Ablators With Nonequilibrium Surface Chemistry, Hicham Alkandry, Iain D. Boyd, Alexandre Martin

Mechanical Engineering Faculty Publications

This paper describes the coupling of a Navier-Stokes solver to a material response code to simulate nonequilibrium gas-surface interactions. The Navier-Stokes solver used in this study is LeMANS, which is a three-dimensional computational fluid dynamics code that can simulate hypersonic reacting flows including thermo-chemical nonequilibrium effects. The material response code employed in this study is MOPAR, which uses the one-dimensional control volume nite-element method to model heat conduction and pyrolysis gas behavior. This coupling is demonstrated using a test case based on the Stardust sample return capsule. Coupled simulations are performed at three different trajectory conditions. The effects of the …


A New Approach To Light-Weight Ablators Analysis: From Micro-Tomography Measurements To Statistical Analysis And Modeling, Nagi N. Mansour, Francesco Panerai, Alexandre Martin, Dilworth Y. Parkinson, Alastair A. Macdowell, Abdelmoula Haboub, Timothy A. Sandstrom, Tony Fast, Gerard L. Vignoles, Jean Lachaud Jun 2013

A New Approach To Light-Weight Ablators Analysis: From Micro-Tomography Measurements To Statistical Analysis And Modeling, Nagi N. Mansour, Francesco Panerai, Alexandre Martin, Dilworth Y. Parkinson, Alastair A. Macdowell, Abdelmoula Haboub, Timothy A. Sandstrom, Tony Fast, Gerard L. Vignoles, Jean Lachaud

Mechanical Engineering Faculty Publications

The morphology characteristics and ablation behavior of a highly porous carbon fiber preform are studied using a combined experimental/numerical approach. Morphological characterization of the three-dimensional structure of the material is performed by hard X-rays synchrotron micro-tomography at the Advanced Light Source of Lawrence Berkeley National Laboratory. The resulting micro-tomography voxels are used to compute geometrical properties of the carbon preform, like porosity, specific surface area and tortuosity, that are otherwise indirectly measured through experimental techniques. The reconstructed volumes are used to build a computational grid for numerical simulations of the fibers' ablation. By modeling the diffusion of oxygen through the …


Comparison Of Models For Mixture Transport Properties For Numerical Simulations Of Ablative Heat-Shields, Hicham Alkandry, Iain D. Boyd, Alexandre Martin Jan 2013

Comparison Of Models For Mixture Transport Properties For Numerical Simulations Of Ablative Heat-Shields, Hicham Alkandry, Iain D. Boyd, Alexandre Martin

Mechanical Engineering Faculty Publications

The goal of this study is to evaluate the effects of different models for calculating the mixture transport properties on flowfield predictions of ablative heat-shields. The Stardust sample return capsule at four different trajectory conditions is used as a test case for this study. In the first part of the study, the results predicted using Wilke's mixing rule with species viscosities calculated using Blottner's curve fits and species thermal conductivities determined using Eucken's relation are compared to the results obtained using Gupta's mixing rule with collision cross-section (CCS) data. The Wilke/Blottner/Eucken model overpredicts the heat transfer to the surface relative …


Ablation Test-Case Series #2. Numerical Simulation Of Ablative-Material Response: Code And Model Comparisons, Jean R. Lachaud, Alexandre Martin, Tom Van Eekelen, Ioana Cozmuta Feb 2012

Ablation Test-Case Series #2. Numerical Simulation Of Ablative-Material Response: Code And Model Comparisons, Jean R. Lachaud, Alexandre Martin, Tom Van Eekelen, Ioana Cozmuta

Mechanical Engineering Faculty Publications

This test-case series on the numerical simulation of the response of ablative-materials really started out of pure curiosity. Code developers and users were curious to see "how the codes compare" and "what is the effect of the different hypotheses in the models implemented". The objective of these test-case series is to propose problems of increasing complexity until it is agreed that the most-elaborated well-defined problem is formulated. The first test-case was mostly a simple heat transfer problem chosen for it’s simplicity (it is summarized in section 2.1). The second test-case series goes one step further, with the objective of reaching …


Ablation Test-Case Series #3. Numerical Simulation Of Ablative-Material Response: Code And Model Comparisons, Tom Van Eekelen, Jean R. Lachaud, Alexandre Martin, Ioana Cozmuta Feb 2012

Ablation Test-Case Series #3. Numerical Simulation Of Ablative-Material Response: Code And Model Comparisons, Tom Van Eekelen, Jean R. Lachaud, Alexandre Martin, Ioana Cozmuta

Mechanical Engineering Faculty Publications

The test-case series #3 will be a further extension of the tests defined within the framework of the NASA ablation modelling workshops. In order to reduce the amount of work, all tests within test-case series #3, will use the TACOT material defined by Lachaud et al. The main goal of this new series, is to test the 3D modelling capabilities of the participating codes. The first 1D results were presented at the 4th Ablation workshop, and together with the results of the second test-case series, will be discussed and analyzed more thoroughly at the 5th Ablation Workshop, Feb. 28- March …


Modeling Of Heat Transfer Attenuation By Ablative Gases During The Stardust Re-Entry, Alexandre Martin, Iain D. Boyd Jan 2012

Modeling Of Heat Transfer Attenuation By Ablative Gases During The Stardust Re-Entry, Alexandre Martin, Iain D. Boyd

Mechanical Engineering Faculty Publications

The great majority of modern space vehicles designed for planetary exploration use ablative materials to protect the payload against the high heating environment experienced during re-entry. In order to properly model and predict the aerothermal environment of the vehicle, it is imperative to account for the gases produced by ablation processes. In the case of charring ablators, where an inner resin is pyrolyzed at a relatively low temperature, the composition of the gas expelled into the boundary layer is complex and may lead to thermal chemical reactions that cannot be captured with simple flow chemistry models. In order to obtain …


Numerical Modeling Of The Cn Spectral Emission Of The Stardust Re-Entry Vehicle, Alexandre Martin, Erin D. Farbar, Iain D. Boyd Jun 2011

Numerical Modeling Of The Cn Spectral Emission Of The Stardust Re-Entry Vehicle, Alexandre Martin, Erin D. Farbar, Iain D. Boyd

Mechanical Engineering Faculty Publications

Re-entry vehicles designed for space exploration are usually equipped with thermal protection systems made of ablative material. In order to properly model and predict the aerothermal environment of the vehicle, it is imperative to account for the gases produced by ablation processes. In the case of charring ablators, where an inner resin is pyrolyzed at a relatively low temperature, the composition of the gas expelled into the boundary layer is complex and may lead to thermal chemical reactions that cannot be captured with simple ow chemistry models. In order to obtain better predictions, an appropriate gas ow chemistry model needs …


Test Case Series 1 (Overview Of Intercalibration Results: A Model Comparison), Thermal Performance Database Team Mar 2011

Test Case Series 1 (Overview Of Intercalibration Results: A Model Comparison), Thermal Performance Database Team

Ablation Workshop: Code Comparison

Presentation Overview:

  • Comparison of model results
  • All comparisons (plots) are percent difference from FIAT reference model


Test Case Series 1, Jean R. Lachaud, Alexandre Martin, Ioana Cozmuta, Bernard Laub Mar 2011

Test Case Series 1, Jean R. Lachaud, Alexandre Martin, Ioana Cozmuta, Bernard Laub

Ablation Workshop: Code Comparison

A simple one-dimensional test case is defined for the purpose of inter-code comparison. This year the focus is set on in-depth physics and chemistry. Material properties, boundary conditions, and output format are provided.


Cfd Implementation Of A Novel Carbon-Phenolic-In-Air Chemistry Model For Atmospheric Re-Entry, Alexandre Martin, Iain D. Boyd Jan 2011

Cfd Implementation Of A Novel Carbon-Phenolic-In-Air Chemistry Model For Atmospheric Re-Entry, Alexandre Martin, Iain D. Boyd

Alexandre Martin

Recent and future re-entry vehicle designs use ablative material as the main component of the heat shield of their thermal protection systems. In order to properly predict the behavior of the vehicle, it is imperative to take into account the gases produced by the ablation process when modeling the reacting flow environment. In the case of charring ablators, where an inner resin is pyrolyzed at a relatively low temperature, the composition of the gas expelled in the boundary layer is complex and might lead to thermal chemical reactions that cannot be captured with simple flow chemistry models. In order to …


Assessment Of Carbon-Phenolic-In-Air Chemistry Models For Atmospheric Reentry, Alexandre Martin, Iain D. Boyd Jun 2010

Assessment Of Carbon-Phenolic-In-Air Chemistry Models For Atmospheric Reentry, Alexandre Martin, Iain D. Boyd

Alexandre Martin

Recent and future re-entry vehicle designs use ablative material as the main component of the heat shield of their thermal protection system. In order to properly predict the behavior of the vehicle, it is imperative to take into account the gases produced by the ablation process when modeling the reacting flow environment. In the case of charring ablators, where an inner resin is pyrolyzed at a relatively low temperature, the composition of the gas expelled in the boundary layer is complex and might lead to thermal chemical reactions that cannot be captured with simple flow chemistry models. In order to …


Mesh Tailoring For Strongly Coupled Computation Of Ablative Material In Nonequilibrium Hypersonic Flow, Alexandre Martin, Iain D. Boyd Jun 2010

Mesh Tailoring For Strongly Coupled Computation Of Ablative Material In Nonequilibrium Hypersonic Flow, Alexandre Martin, Iain D. Boyd

Alexandre Martin

A one-dimensional material response implicit solver with surface ablation and pyrolysis is strongly coupled to LeMANS, a CFD code for the simulation of weakly ionized hypersonic flows in thermo-chemical non-equilibrium. Using blowing wall boundary conditions and a moving mesh algorithm, the results of a strongly coupled solution of a sample re-entry problem are presented. Because of the requirement of a coupling scheme, an Arbitrary Lagrangian-Eulerian (ALE) approach is used to compute the flux, allowing the mesh to move as the surface ablates. However, as the shape of the vehicle changes, the shock location and geometry are also modified. Using the …


Chemistry Model For Ablating Carbon-Phenolic Material During Atmospheric Re-Entry, Alexandre Martin, Iain D. Boyd, Ioana Cozmuta, Michael J. Wright Jan 2010

Chemistry Model For Ablating Carbon-Phenolic Material During Atmospheric Re-Entry, Alexandre Martin, Iain D. Boyd, Ioana Cozmuta, Michael J. Wright

Alexandre Martin

Recent and future re-entry vehicle designs, such as the CEV, use ablative material as the main component of the heat shield of their thermal protection system. In order to properly predict the behavior of the vehicle, it is imperative to take into account the gases produced by the ablation process when modeling the reacting flow environment. In the case of charring ablators, where an inner resin is pyrolyzed at a relatively low temperature, the composition of the gas expelled in the boundary layer is complex and might lead to thermal chemical reactions that cannot be captured with simple flow chemistry …


Strongly Coupled Computation Of Material Response And Nonequilibrium Flow For Hypersonic Ablation, Alexandre Martin, Iain D. Boyd Jun 2009

Strongly Coupled Computation Of Material Response And Nonequilibrium Flow For Hypersonic Ablation, Alexandre Martin, Iain D. Boyd

Alexandre Martin

A one-dimensional material response implicit solver with surface ablation and pyrolysis is strongly coupled to LeMANS, a CFD code for the simulation of weakly ionized hypersonic flows in thermo-chemical non-equilibrium. Using blowing wall boundary conditions and a moving mesh algorithm, the results of a strongly coupled solution of a re-entry problem are presented, using the well defined case of the IRV-2 vehicle. Results are compared to other coupled codes and show good agreement with published numerical results.


Solution Of Multi-Species Real Gas Flows With Electric Arc And Wall Ablation, Alexandre Martin, Marcelo Reggio, Jean-Yves Trépanier May 2004

Solution Of Multi-Species Real Gas Flows With Electric Arc And Wall Ablation, Alexandre Martin, Marcelo Reggio, Jean-Yves Trépanier

Alexandre Martin

Nozzle ablation caused by high temperature electric arc is a physical phenomenon commonly found in high voltage electrical devices. In circuit breakers, for example, the strong ablation of the PTFE nozzle wall results in the creation of new species, which implies various chemical reactions. For the simulation of these phenomena, a bi-dimensional axisymmetric Euler equations model for multi-species flow has been developed. To solve the governing equations, a finite volume method based on Roe’s flux splitting scheme [11] has been established. The proposed scheme approaches the mean-values used in Roe’s matrix in a new way. To take into account the …