Open Access. Powered by Scholars. Published by Universities.®

Arts and Humanities Commons

Open Access. Powered by Scholars. Published by Universities.®

Master's Theses

2017

Automatic Music Transcription

Articles 1 - 1 of 1

Full-Text Articles in Arts and Humanities

Automatic Music Transcription With Convolutional Neural Networks Using Intuitive Filter Shapes, Jonathan Sleep Oct 2017

Automatic Music Transcription With Convolutional Neural Networks Using Intuitive Filter Shapes, Jonathan Sleep

Master's Theses

This thesis explores the challenge of automatic music transcription with a combination of digital signal processing and machine learning methods. Automatic music transcription is important for musicians who can't do it themselves or find it tedious. We start with an existing model, designed by Sigtia, Benetos and Dixon, and develop it in a number of original ways. We find that by using convolutional neural networks with filter shapes more tailored for spectrogram data, we see better and faster transcription results when evaluating the new model on a dataset of classical piano music. We also find that employing better practices shows …