Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Entire DC Network

Non-Energy Circular Economy Potential Of Rice Husks: A Techno-Eco-Environmental Assessment, Winfred Oppong Yeboah Aug 2023

Non-Energy Circular Economy Potential Of Rice Husks: A Techno-Eco-Environmental Assessment, Winfred Oppong Yeboah

Graduate Theses and Dissertations

The non-energy circular bioeconomy potential of rice husks was examined via sustainability assessments, namely life cycle assessment (LCA), life cycle impact cost assessment (LCICA), and techno-economic assessment (TEA). The study was conducted with three objectives. The first objective was to review previous studies on the non-energy utilization potential of rice husks by the method of meta-analysis. This review followed a systematic approach where research papers were collected following a defined set of criteria. The study revealed 16 key utilization pathways, all of which showed promising results. However, a comprehensive sustainability assessment was lacking in all of the pathways. The second …


Removal Of Fluoride From Mine Water Via Adsorption For Land-Applied Soil Amendment, Adrian Damian, Kevin Le, Mary Johnson, Ethan Phan, Courtney Golman, Michelle Dopp, Jacqueline Payne May 2020

Removal Of Fluoride From Mine Water Via Adsorption For Land-Applied Soil Amendment, Adrian Damian, Kevin Le, Mary Johnson, Ethan Phan, Courtney Golman, Michelle Dopp, Jacqueline Payne

Chemical Engineering Undergraduate Honors Theses

The process of mining minerals and elements from ores and rocks creates acid rock drainage (ARD). This drainage is water that contains heavy metals and minerals that can be dangerous for human consumption or damaging to the environment. The mining industry has employed various water treatment methods to prevent these metals and minerals from being discharged into water sources such as ponds, lakes, and streams. Currently, the most used treatment process in the mining industry is a cost-effective highdensity sludge (HDS) process. This method reduces the concentration of metals and elements with the use of lime/limestone. However, the concentration of …


Removal Of Fluoride From Mine Water Via Adsorption For Land-Applied Soil Amendment, Michelle Dopp, Kevin Le, Ethan Phan, Mary Johnson, Jacqueline Payne, Adrian Damian, Courtney Golman May 2020

Removal Of Fluoride From Mine Water Via Adsorption For Land-Applied Soil Amendment, Michelle Dopp, Kevin Le, Ethan Phan, Mary Johnson, Jacqueline Payne, Adrian Damian, Courtney Golman

Chemical Engineering Undergraduate Honors Theses

The Moo Pig Sooie’s researched, designed, and economically analyzed a full-scale adsorption column system to be applied in mining processes that leave high amounts of fluoride in their effluent. This system was designed to remove fluoride from water saturated with calcium sulfate, as calcium sulfate is present in high amounts in certain mining processes. Currently, high density sludge (HDS) is commonly employed to reduce fluoride concentrations, but due to solubility limits the sludge treatment cannot lower fluoride below 10 mg/L (ppm). The current enforceable EPA standard for discharged water is at 4 mg/L (ppm), although mining companies anticipate that this …


Removal Of Fluoride From Mine Water Via Adsorption For Land-Applied Soil Amendment, Kevin Le, Adrian Damian, Mary Johnson, Ethan Phan, Courtney Golman, Michelle Dopp, Jacqueline Payne May 2020

Removal Of Fluoride From Mine Water Via Adsorption For Land-Applied Soil Amendment, Kevin Le, Adrian Damian, Mary Johnson, Ethan Phan, Courtney Golman, Michelle Dopp, Jacqueline Payne

Chemical Engineering Undergraduate Honors Theses

The team researched, designed, and economically analyzed a full-scale adsorption column system to be applied in mining processes that leave high amounts of fluoride in their effluent. This system was designed to remove fluoride from water saturated with calcium sulfate, as calcium sulfate is present in high amounts in certain mining processes. Currently, high density sludge (HDS) is commonly employed to reduce fluoride concentrations, but due to solubility limits the sludge treatment cannot lower fluoride below 10 mg/L (ppm). The current enforceable EPA standard for discharged water is at 4 mg/L (ppm), although mining companies anticipate that this standard will …


Removal Of Fluoride From Mine Water Via Adsorption For Land-Applied Soil Amendment, Ethan Phan, Adrian Damian, Kevin Le, Mary Johnson, Courtney Golman, Michelle Dopp, Jacqueline Payne May 2020

Removal Of Fluoride From Mine Water Via Adsorption For Land-Applied Soil Amendment, Ethan Phan, Adrian Damian, Kevin Le, Mary Johnson, Courtney Golman, Michelle Dopp, Jacqueline Payne

Chemical Engineering Undergraduate Honors Theses

The process of mining minerals and elements from ores and rocks creates acid rock drainage (ARD). This drainage is water that contains heavy metals and minerals that can be dangerous for human consumption or damaging to the environment. The mining industry has employed various water treatment methods to prevent these metals and minerals from being discharged into water sources such as ponds, lakes, and streams. Currently, the most used treatment process in the mining industry is a cost-effective high-density sludge (HDS) process. This method reduces the concentration of metals and elements with the use of lime/limestone. However, the concentration of …


Removal Of Fluoride From Mine Water Via Adsorption For Land-Applied Soil Amendment, Jacqueline Payne, Mary Johnson, Kevin Le, Michelle Dopp, Courtney Golman, Adrian Damian, Ethan Phan May 2020

Removal Of Fluoride From Mine Water Via Adsorption For Land-Applied Soil Amendment, Jacqueline Payne, Mary Johnson, Kevin Le, Michelle Dopp, Courtney Golman, Adrian Damian, Ethan Phan

Chemical Engineering Undergraduate Honors Theses

The process of mining minerals and elements from ores and rocks creates acid rock drainage (ARD). This drainage is water that contains heavy metals and minerals that can be dangerous for human consumption or damaging to the environment. The mining industry has employed various water treatment methods to prevent these metals and minerals from being discharged into water sources such as ponds, lakes, and streams. Currently, the most used treatment process in the mining industry is a cost-effective highdensity sludge (HDS) process. This method reduces the concentration of metals and elements with the use of lime/limestone. However, the concentration of …


Removal Of Fluoride From Mine Water Via Adsorption For Land-Applied Soil Amendment, Courtney Golman, Kevin Le, Michelle Dopp, Adrian Damian, Mary Johnson, Jacqueline Payne, Ethan Phan May 2020

Removal Of Fluoride From Mine Water Via Adsorption For Land-Applied Soil Amendment, Courtney Golman, Kevin Le, Michelle Dopp, Adrian Damian, Mary Johnson, Jacqueline Payne, Ethan Phan

Chemical Engineering Undergraduate Honors Theses

The process of mining minerals and elements from ores and rocks creates acid rock drainage (ARD). This drainage is water that contains heavy metals and minerals that can be dangerous for human consumption or damaging to the environment. The mining industry has employed various water treatment methods to prevent these metals and minerals from being discharged into water sources such as ponds, lakes, and streams. Currently, the most used treatment process in the mining industry is a cost-effective highdensity sludge (HDS) process. This method reduces the concentration of metals and elements with the use of lime/limestone. However, the concentration of …


Degradation Of Orange G Through Persulfate Activated Nanoscale Zerovalent Iron Composites And Boron-Doped Diamond Electrodes, Suzana Ivandic May 2018

Degradation Of Orange G Through Persulfate Activated Nanoscale Zerovalent Iron Composites And Boron-Doped Diamond Electrodes, Suzana Ivandic

Chemical Engineering Undergraduate Honors Theses

Properly treated wastewater is necessary for water reuse and to avoid unnecessary impacts on the environment. The poultry industry utilizes large amounts of water for poultry processing. The need for innovative ways to treat organic contaminants in the poultry wastewater industry is especially necessary due to increased poultry consumption. The U.S. Department of Agriculture projected Americans would consume approximately 92 pounds of chicken per person in 2017.1 Dissolved air flotation (DAF) is currently used in poultry wastewater treatment, but DAF does not remove organic contaminants efficiently per effluent standards. Implementation of processes that degrade contaminants directly would benefit the …


Performance Assessment Of Solid State Anaerobic Digestion Of Poultry Litter, Mason Puckett May 2018

Performance Assessment Of Solid State Anaerobic Digestion Of Poultry Litter, Mason Puckett

Biological and Agricultural Engineering Undergraduate Honors Theses

The disposal of poultry litter can exert an economic and environmental burden to the agriculture community. As a result, it is desirable to reduce the amount of waste and recover resources from the waste. This study focuses on the construction and preliminary testing of a laboratory scale (20 L) solid state anaerobic digester (AD) fed with dry poultry litter. Glucose was added in addition to the poultry litter to achieve the appropriate C:N ratio to support the growth of anaerobic microorganisms. The AD was first fed every 4 days at 4 g VS/L/feeding for 24 days, rested (no feeding) for …


Trihalomethane, Dihaloacetonitrile, And Total N-Nitrosamine Precursor Adsorption By Carbon Nanotubes: The Importance Of Surface Oxides And Pore Volume, Erin Needham May 2017

Trihalomethane, Dihaloacetonitrile, And Total N-Nitrosamine Precursor Adsorption By Carbon Nanotubes: The Importance Of Surface Oxides And Pore Volume, Erin Needham

Graduate Theses and Dissertations

As drinking water sources become increasingly impaired, enhanced removal of natural organic matter (NOM) may be required to curb formation of disinfection byproducts (DBPs) upon chlor(am)ination. While carbon nanotubes (CNTs) can adsorb NOM, their properties for DBP precursor adsorption have not been elucidated. Nine types of CNTs were assessed for trihalomethane (THM), dihaloacetonitrile (DHAN), and total N-nitrosamine (TONO) precursor adsorption. Batch isotherm experiments were completed with lake water and, to simulate an impaired condition, effluent from a wastewater treatment plant (WWTP). Adsorption varied with CNT type and dose, with TONO precursors having the highest percent removals from WWTP effluent (up …


Life Cycle Assessment Of Sweet Sorghum As Feedstock For Second-Generation Biofuel Production, Karla Morrissey May 2017

Life Cycle Assessment Of Sweet Sorghum As Feedstock For Second-Generation Biofuel Production, Karla Morrissey

Chemical Engineering Undergraduate Honors Theses

There exist few life cycle assessments (LCAs) in the literature that focus on the second-generation biofuel production from sweet sorghum, a non-food-source feedstock that offers several advantages in terms of farming requirements compared to corn or sugarcane. The objective of this LCA study was to evaluate biofuels produced from sweet sorghum to determine the potential environmental benefits of producing sweet sorghum biofuel compared to conventional fossil fuels. The biofuel production process used for this study differed from other LCAs in that, in parallel to stalk juice extraction and fermentation, residual bagasse and vinasse was pyrolyzed and upgraded to a diesel …


Evaluation Of Phosphorous Removals By Biochar Supported Nano-Scale Zero-Valent Iron, Maria S. Rossetti May 2017

Evaluation Of Phosphorous Removals By Biochar Supported Nano-Scale Zero-Valent Iron, Maria S. Rossetti

Chemical Engineering Undergraduate Honors Theses

This study evaluated the effectiveness of biochar-supported nano-scale zero-valent iron (nZVI/BC) in removing phosphorus (P) from water. Samples of nZVI/BC were prepared using aqueous nanoparticles synthesis techniques, and were mixed with a stock phosphorus solution. To determine P reductions water samples were tested for P content using the ascorbic acid method. This procedure was repeated for samples of stock P solution, zero-valent iron (ZVI), biochar, and ZVI/BC. nZVI/BC reduced P content by 86% whereas ZVI, biochar, and ZVI/BC removed 6%, -23%, and 17% respectively. This suggests that nZVI/BC has the potential to be an effective method of stormwater remediation.


Removal Of Carboxylic Acids And Water From Pyrolysis Oil, George Alexander Marshall Dec 2016

Removal Of Carboxylic Acids And Water From Pyrolysis Oil, George Alexander Marshall

Graduate Theses and Dissertations

Over 70% of the world’s energy consumption is provided by fossil fuels and with those reserves depleting at a fast rate, alternative energy sources or methods are needed to support the world’s energy needs. This research was done in an attempt to make it more economically feasible to produce fuel products, such as bio-diesel, from the upgrading of bio-oil obtained from the pyrolysis of biomass waste material such as sawdust. The high water and oxygenated compound content of bio-oil make it undesirable for fuel use; however, two methods involving surface modified commercial membranes were utilized in hopes of overcoming these …


Transformation Of Swine Manure And Algal Consortia To Value-Added Products, Mahmoud A. Sharara May 2015

Transformation Of Swine Manure And Algal Consortia To Value-Added Products, Mahmoud A. Sharara

Graduate Theses and Dissertations

The swine production sector is projected to grow globally. In the past, this growth manifested itself in increased herd sizes and geographically concentrated production. Although economically sound, these trends had negative consequences on surrounding ecosystems. Over-application of manure resulted in water quality degradation, while long-term storage of manure slurries was found to promote release of potent GHG emissions. There is a need for innovative approaches for swine manure management that are compatible with current scales of production, and increasingly strict environmental regulations.

This study aims to investigate the potential for incorporating gasification as part of a novel swine manure management …


Bermudagrass Growth In Soil Contaminated With Hydraulic Fracturing Drilling Fluid, Douglas Wolf, Kristofor R. Brye Jan 2014

Bermudagrass Growth In Soil Contaminated With Hydraulic Fracturing Drilling Fluid, Douglas Wolf, Kristofor R. Brye

Discovery, The Student Journal of Dale Bumpers College of Agricultural, Food and Life Sciences

Hydraulic fracturing is the process of injecting aqueous solutions at high pressure to break apart rock formations and increase the extraction of natural gas. The solutions are recovered and have been land-applied as one disposal technique. Excessive fluid application can result in increased soil salinity that can inhibit plant growth. The objective of this greenhouse study was to evaluate the effects of inorganic fertilizer, broiler litter, and Milorganite® and soil depth interval (0-15 cm or 0-30 cm) on the growth of bermudagrass [Cynodon dactylon (L.) Pers] in soil that was collected from a site that had been contaminated with fracturing …