Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Trihalomethane, Dihaloacetonitrile, And Total N-Nitrosamine Precursor Adsorption By Carbon Nanotubes: The Importance Of Surface Oxides And Pore Volume, Erin Needham May 2017

Trihalomethane, Dihaloacetonitrile, And Total N-Nitrosamine Precursor Adsorption By Carbon Nanotubes: The Importance Of Surface Oxides And Pore Volume, Erin Needham

Graduate Theses and Dissertations

As drinking water sources become increasingly impaired, enhanced removal of natural organic matter (NOM) may be required to curb formation of disinfection byproducts (DBPs) upon chlor(am)ination. While carbon nanotubes (CNTs) can adsorb NOM, their properties for DBP precursor adsorption have not been elucidated. Nine types of CNTs were assessed for trihalomethane (THM), dihaloacetonitrile (DHAN), and total N-nitrosamine (TONO) precursor adsorption. Batch isotherm experiments were completed with lake water and, to simulate an impaired condition, effluent from a wastewater treatment plant (WWTP). Adsorption varied with CNT type and dose, with TONO precursors having the highest percent removals from WWTP effluent (up …


Evaluation Of Phosphorous Removals By Biochar Supported Nano-Scale Zero-Valent Iron, Maria S. Rossetti May 2017

Evaluation Of Phosphorous Removals By Biochar Supported Nano-Scale Zero-Valent Iron, Maria S. Rossetti

Chemical Engineering Undergraduate Honors Theses

This study evaluated the effectiveness of biochar-supported nano-scale zero-valent iron (nZVI/BC) in removing phosphorus (P) from water. Samples of nZVI/BC were prepared using aqueous nanoparticles synthesis techniques, and were mixed with a stock phosphorus solution. To determine P reductions water samples were tested for P content using the ascorbic acid method. This procedure was repeated for samples of stock P solution, zero-valent iron (ZVI), biochar, and ZVI/BC. nZVI/BC reduced P content by 86% whereas ZVI, biochar, and ZVI/BC removed 6%, -23%, and 17% respectively. This suggests that nZVI/BC has the potential to be an effective method of stormwater remediation.