Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Removal Of Chromium(Vi) And Chromium(Iii) Ions From Aqueous Solution Using Bio-Char Generated From Agricultural Waste Products, Diego Fernando Gonzalez May 2018

Removal Of Chromium(Vi) And Chromium(Iii) Ions From Aqueous Solution Using Bio-Char Generated From Agricultural Waste Products, Diego Fernando Gonzalez

Theses and Dissertations

Heavy metals are one of the most persistent and prevalent contaminants in the aquatic environment. The removal of chromium from aqueous solution, especially in the hexavalent form is difficult. New technologies, techniques and/or new materials have been designed in order to effectively and efficiently remove chromium from the aqueous environment. The project focuses on the comparison of the effects of pH, time, temperature, binding capacity on bio-char’ generated from agricultural waste produces vs an amino modified derivative of the bio-char. Pineapple skins were dried, ground, sieved, and pyrolyzed to produce a bio-char material. The bio-char was analyzed using FTIR to …


Design Improvements To Sulfate-Reducing Bioreactors For Mine-Influenced Stream Remediation In Cold Climates, Katrina Moreira Apr 2018

Design Improvements To Sulfate-Reducing Bioreactors For Mine-Influenced Stream Remediation In Cold Climates, Katrina Moreira

Graduate Theses & Non-Theses

Mine-influenced water (MIW), a waste water product containing heavy metals and sulfates, is a significant pollution source to waters in Montana. Implementing a low cost, passive treatment system, such as a sulfate-reducing bioreactor (SRBR), is desired for remediation of streams influenced by heavy metals in remote locations. SRBR systems operate by using organic matter and sulfate-rich water to precipitate and immobilize dissolved heavy metals. Sulfate-reducing bacteria utilize the organic matter as an electron donor to convert sulfate to sulfide, and then sulfide in the bioreactor is utilized to precipitate heavy metals. Under ideal operating conditions, SRBR systems can remove >98% …


Surface Oxygenation Of Biochar Through Ozonization For Dramatically Enhancing Cation Exchange Capacity, Matthew D. Huff, Sarah Marshall, Haitham A. Saeed, James Weifu Lee Jan 2018

Surface Oxygenation Of Biochar Through Ozonization For Dramatically Enhancing Cation Exchange Capacity, Matthew D. Huff, Sarah Marshall, Haitham A. Saeed, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

Background

Biochar cation exchange capacity (CEC) is a key property that is central to biochar environmental applications including the retention of soil nutrients in soil amendment and removal of certain pollutants in water-filtration applications.

Results

This study reports an innovative biochar-ozonization process that dramatically increases the CEC value of biochars by a factor of 2. The ozonized biochars also show great improvement on adsorption of methylene blue by as much as a factor of about 5. In this study, biochar samples treated with and without ozone were analyzed by means of pH and CEC assays, water field capacity measurement, elemental …