Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Biomass-Derived Electrode Materials And Sustainable Processes For Supercapacitors, Katelyn M. Shell Jan 2021

Biomass-Derived Electrode Materials And Sustainable Processes For Supercapacitors, Katelyn M. Shell

Theses and Dissertations

Biomass is one of the most abundant natural resources and has been used as a source of energy for thousands of years. Biomass as a precursor for energy storage materials is still relatively novel and faces several obstacles before becoming commonly used in today’s electrical devices. Currently, energy storage devices, such as batteries, capacitors, and supercapacitors, utilize petroleum-derived graphitic carbons for anodes, generating a need for more sustainable materials. Biomass, as a carbon-rich source for electrode materials, presents a viable and economically feasible alternative due to the prevalent lignocellulosic compounds: lignin, cellulose, and hemicellulose. Preliminary studies on the solid residues …


Lignin-Derived Carbon And Nanocomposite Materials For Energy Storage Applications, Wenqi Li Jan 2019

Lignin-Derived Carbon And Nanocomposite Materials For Energy Storage Applications, Wenqi Li

Theses and Dissertations--Biosystems and Agricultural Engineering

With a growing demand for electrical energy storage materials, lignin-derived carbon materials have received increasing attention in recent years. As a highly abundant renewable carbon source, lignin can be converted to a variety of advanced carbon materials with tailorable chemical, structural, mechanical and electrochemical properties through thermochemical conversion (e.g. pyrolysis). However, the non-uniformity in lignin structure, composition, inter-unit linkages and reactivity of diverse lignin sources greatly influence lignin fractionation from plant biomass, the pyrolysis chemistry, and property of the resulting carbon materials.

To introduce a better use of lignocellulosic biomass to biofuels and co-products, it is necessary to find novel …