Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Environmental Chemistry

Charcoal

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Potentially Massive And Global Non-Pyrogenic Production Of Condensed "Black" Carbon Through Biomass Oxidation, Aleksandar I. Goranov, Hongmei Chen, Jianshu Duan, Satish C. B. Myneni, Patrick G. Hatcher Jan 2024

Potentially Massive And Global Non-Pyrogenic Production Of Condensed "Black" Carbon Through Biomass Oxidation, Aleksandar I. Goranov, Hongmei Chen, Jianshu Duan, Satish C. B. Myneni, Patrick G. Hatcher

Chemistry & Biochemistry Faculty Publications

With the increased occurrences of wildfires worldwide, there has been an increase in scientific interest surrounding the chemistry of fire-derived "black" carbon (BC). Traditionally, wildfire research has assumed that condensed aromatic carbon (ConAC) is exclusively produced via combustion, and thus, ConAC is equated to BC. However, the lack of correlations between ConAC in soils or rivers and wildfire history suggests that ConAC may be produced non-pyrogenically. Here, we show quantitative evidence that this occurs during the oxidation of biomass with environmentally ubiquitous hydroxyl radicals. Pine wood boards exposed to iron nails and natural weather conditions for 12 years yielded a …


Production And Composition Of Pyrogenic Dissolved Organic Matter From A Logical Series Of Laboratory-Generated Chars, Kyle W. Bostick, Andrew R. Zimmerman, Andrew S. Wozniak, Siddhartha Mitra, Patrick G. Hatcher Apr 2018

Production And Composition Of Pyrogenic Dissolved Organic Matter From A Logical Series Of Laboratory-Generated Chars, Kyle W. Bostick, Andrew R. Zimmerman, Andrew S. Wozniak, Siddhartha Mitra, Patrick G. Hatcher

Chemistry & Biochemistry Faculty Publications

Though pyrogenic carbon (pyC) has been assumed to be predominantly stable, degradation and transfers of pyC between various pools have been found to influence its cycling and longevity in the environment. Dissolution via leaching may be the main control on loss processes such as microbial or abiotic oxidation, mineral sorption, or export to aquatic systems. Yet, little is known about the controls on pyrogenic dissolved organic matter (pyDOM) generation or composition. Here, the yield and composition of pyDOM generated through batch leaching of a thermal series of oak and grass biochars, as well as several non-pyrogenic reference materials, was compared …