Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

University of Tennessee, Knoxville

Chemical Engineering

Catalyst

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Manufacturing Of Carbon-Based Hybrid Nanocomposites With Engineered Functionalities Via Laser Ablation Synthesis In Solution (Lasis) Techniques, Erick Leonardo Ribeiro Aug 2020

Manufacturing Of Carbon-Based Hybrid Nanocomposites With Engineered Functionalities Via Laser Ablation Synthesis In Solution (Lasis) Techniques, Erick Leonardo Ribeiro

Doctoral Dissertations

Carbon-based composite materials have long been fabricated and extensively used in our daily lives. In the past decades, with rapid development of nanotechnology, these class of material have gained even more attention owing to their outstanding properties which directly results in their prospects to revolutionize technological development in many fields, ranging from medicine to electronics. Nevertheless, for certain applications, including electrochemical energy storage/conversion devices, the chemically inert nature of these materials creates obstacles and thus requires their coupling with other active species. This thesis explores the use of Laser Ablation Synthesis in Solution (LASiS) in tailoring promising strategies and pathways …


Tandem Laser Ablation Synthesis In Solution-Galvanic Replacement Reaction (Lasis-Grr): A Facile Route For The Synthesis Of Complex Intermetallic Nanomaterials With Engineered Functionalities, Sheng Hu May 2016

Tandem Laser Ablation Synthesis In Solution-Galvanic Replacement Reaction (Lasis-Grr): A Facile Route For The Synthesis Of Complex Intermetallic Nanomaterials With Engineered Functionalities, Sheng Hu

Doctoral Dissertations

Tailoring the heteronanostructures of nanoscale materials to tune their structure-property relations for desirable interfacial energetics is imperative for their catalytic, optoelectronic and electrochemical applications. Current PhD thesis develops a facile, yet “green” synthesis route that uses laser ablation synthesis in solution in tandem with galvanic replacement reaction (tandem LASiS-GRR) as a one-pot, one-step technique for manufacturing diverse and complex heteronanostructures of metal oxides, hydroxides, nanocomposites (NCs), and nanoalloys (NAs). The scientific concept here is that the non-equilibrium thermodynamics and kinetics of high-energy LASiS-GRR can be tuned by laser parameters and solvent chemistry to form complex NCs/NAs of tailored sizes/shapes, metastable …


The Synthesis And Characterization Of Novel Group 13 Nanostructured Building Block Heterogeneous Silicate Catalysts, Joshua G. Abbott Aug 2012

The Synthesis And Characterization Of Novel Group 13 Nanostructured Building Block Heterogeneous Silicate Catalysts, Joshua G. Abbott

Doctoral Dissertations

A building block approach and sequential addition methodology were utilized to prepare heterogeneous silicate catalysts containing atomically dispersed group 13 metal (B, Al, Ga) centers. The octa(trimethyltin) silsequioxane, Si8[sub]O12[sub](OSnMe3[sub])8[sub], was used as the building block for the synthesis of these materials. Reaction of the building block with a variety of group 13 metal chlorides led to the formation of cross-linked matrices. All prepared materials were characterized by gravimetric analysis, gas absorption, IR, and NMR. In addition, aluminum and boron samples where characterized by 27[sup]Al and 11[sup]B solid state NMR, and gallium samples were studied using x-ray absorption techniques.

Studies found …