Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Entire DC Network

Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd Dec 2015

Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd

Dissertations & Theses (Open Access)

Normal Glycolytic Enzyme Activity is Critical for Hypoxia Inducible Factor-1α Activity and Provides Novel Targets for Inhibiting Tumor Growth

By Geoffrey Grandjean

Advisory Professor: Garth Powis, D. Phil

Unique to proliferating cancer cells is the observation that their increased need for energy is provided by a high rate of glycolysis followed by lactic acid fermentation in a process known as the Warburg Effect, a process many times less efficient than oxidative phosphorylation employed by normal cells to satisfy a similar energy demand [1]. This high rate of glycolysis occurs regardless of the concentration of oxygen in the cell and …


Identifying And Characterizing Yeast Pas Kinase 1 Substrates Reveals Regulation Of Mitochondrial And Cell Growth Pathways, Desiree Demille Jun 2015

Identifying And Characterizing Yeast Pas Kinase 1 Substrates Reveals Regulation Of Mitochondrial And Cell Growth Pathways, Desiree Demille

Theses and Dissertations

Glucose allocation is an important cellular process that is misregulated in the interrelated diseases obesity, diabetes and cancer. Cells have evolved critical mechanisms for regulating glucose allocation, one of which is sensory protein kinases. PAS kinase is a key sensory protein kinase that regulates glucose allocation in yeast, mice and man; and is a novel therapeutic target for the treatment of metabolic diseases such as obesity, diabetes and cancer. Despite its importance, the molecular mechanisms of PAS kinase function are largely unknown. Through large-scale protein-interaction studies, we have identified 93 novel binding partners for PAS kinase which help to expand …


Elucidating The Impact Of Roseophage On Roseobacter Metabolism And Marine Nutrient Cycles, Nana Yaw Darko Ankrah May 2015

Elucidating The Impact Of Roseophage On Roseobacter Metabolism And Marine Nutrient Cycles, Nana Yaw Darko Ankrah

Doctoral Dissertations

As the most abundant biological entities in marine environments, viruses are an important component of marine food webs. The activity of viruses contributes significantly to the mortality of marine microorganisms, ultimately influencing biological function and chemical composition of aquatic systems by impacting species composition and flow of carbon, nitrogen and other nutrients. Despite the growing recognition that viral activity contributes to marine biogeochemical cycles, the extent to which virus infection reshapes host metabolism and the effect of this alteration on the composition of host lysate remains poorly understood. Additionally, the degree to which natural bacterioplankton communities metabolise the released lysate …


Role Of Crebh In Endotoxin Mediated Modulation Of Hepatic Metabolism, Aditya Prakash Dandekar Jan 2015

Role Of Crebh In Endotoxin Mediated Modulation Of Hepatic Metabolism, Aditya Prakash Dandekar

Wayne State University Dissertations

Bacterial endotoxins can induce a variety of physiological changes in the host. This effect is not only restricted to inflammatory changes but also comprises metabolic changes in the host body. Lipopolysaccharide (LPS), one of the key components of the bacterial cell walls, is capable of triggering host metabolic changes. Hyperlipidemia usually accompanies with high endotoxin levels as well as inflammation. Lipid metabolism disorders are one of the common hallmarks of a patient with sepsis or high levels of endotoxin through diet. Previously, we have identified an endoplasmic reticulum (ER) anchored liver-specific transcription factor CREBH (cAMP-responsive element-binding protein, hepatocyte-specific), which is …


The Role Of Crebh In Hepatic Energy Regulation Under Metabolic Stress, Roberto Mendez Jan 2015

The Role Of Crebh In Hepatic Energy Regulation Under Metabolic Stress, Roberto Mendez

Wayne State University Dissertations

Lipid metabolism is tightly regulated by nuclear receptors, transcription factors, and cellular enzymes in response to nutritional, hormonal, and stress signals. Hepatocyte specific, cyclic AMP responsive element-binding protein (CREBH) is a transcription factor that is preferentially expressed in the liver and localized in the endoplasmic reticulum (ER) membrane. CREBH is known to be activated by ER stress, inflammatory stimuli, and metabolic signals to regulate hepatic acute-phase response, lipid metabolism, and glucose metabolism. In my thesis research, I have characterized the roles and mechanisms of CREBH in these functions, as well as the overall phenotype of CrebH-null mice. I demonstrated that …


Strategies For Preventing Age And Neurodegenerative Disease-Associated Mitochondrial Dysfunction, Vedad Delic Jan 2015

Strategies For Preventing Age And Neurodegenerative Disease-Associated Mitochondrial Dysfunction, Vedad Delic

USF Tampa Graduate Theses and Dissertations

Mitochondrial dysfunction plays a pivotal role in the development of aging phenotypes and aging-associated neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and Amyotrophic lateral sclerosis (ALS). Strategies that restore mitochondrial dysfunction may rescue the deficits of central metabolism in these disorders and improve cell survival. For example, we found that modulating the mTOR signaling pathway in a tissue culture model of aging-induced mitochondrial DNA mutation enhanced mitochondrial function as evidenced by increased oxygen consumption. Our previous melatonin studies also led us to hypothesize that caloric restriction and the hormone melatonin would reverse brain mitochondrial dysfunction in animal …


Exploring The Role Of Intracellular Aminopeptidases In Staphylococcus Aureus Pathogenesis, Devon Nicole Marking Jan 2015

Exploring The Role Of Intracellular Aminopeptidases In Staphylococcus Aureus Pathogenesis, Devon Nicole Marking

USF Tampa Graduate Theses and Dissertations

Staphylococcus aureus is a remarkably pathogenic bacterium that is widely prevalent among the human population. It is the leading agent of skin and soft tissue infections, and is also responsible for causing an array of severe and life threatening diseases. The invasiveness of the pathogen, coupled with increasing antibiotic resistance seen for S. aureus infections, makes this bacterium a prominent public health concern. The extended pathogenicity of S. aureus is largely due to its repertoire of virulence factors, which are typically characterized by being bound to the cell wall, or secreted into the extracellular environment. Previously, our lab identified a …


Metabolic Characterization Of Mpnst Cell Lines, Christopher A. Waker Jan 2015

Metabolic Characterization Of Mpnst Cell Lines, Christopher A. Waker

Browse all Theses and Dissertations

Malignant transformation is the process by which cells develop cancer properties. While many causes for malignant transformation are known (i.e. common genetic mutations and/or exposure to toxins or viruses), the basic requirements that allow a cell to stay alive with altered nutrient and energy requirements are just now being studied. In some tumor types malignant cells undergo changes that result in metabolic differences compared to normal cells. These can include defects in mitophagy resulting in an accumulation of dysfunctional mitochondria and/or a metabolic switch resulting in increased glycolysis, termed the Warburg effect. Increased tumor growth and metastasis have also been …


Carnitine And O-Acylcarnitines In Pseudomonas Aerguinosa: Metabolism, Transport, And Regulation, Jamie Meadows Jan 2015

Carnitine And O-Acylcarnitines In Pseudomonas Aerguinosa: Metabolism, Transport, And Regulation, Jamie Meadows

Graduate College Dissertations and Theses

Pseudomonas aeruginosa is found in numerous environments and is an opportunistic pathogen affecting those who are immunocompromised. Its large genome encodes tremendous metabolic and regulatory diversity that enables P. aeruginosa to adapt to various environments. We are interested in how P. aeruginosa senses and responds to the host-derived compounds, carnitine and acylcarnitines. Acylcarnitines can be hydrolyzed to carnitine, where the liberated carnitine and its catabolic product glycine betaine can be used as osmoprotectants, for induction of the virulence factor phospholipase C, and as sole carbon, nitrogen, and energy sources. P. aeruginosa is incapable of de novo synthesis of carnitine and …


Selection And Basis For 2,4-D (2,4-Dicholorphenoxyacetic Acid) Tolerance In Red Clover (Trifolium Pratense), Tara L. B. Lewis Jan 2015

Selection And Basis For 2,4-D (2,4-Dicholorphenoxyacetic Acid) Tolerance In Red Clover (Trifolium Pratense), Tara L. B. Lewis

Theses and Dissertations--Plant and Soil Sciences

A red clover (Trifolium pratense) population (UK), from a cross between the cultivar Kenland and a 2,4-D tolerant population (Florida), was recurrently selected for 2,4-D tolerance with evaluations after the 6th, 7th, and 8th selection cycles. All UK populations were more 2,4-D tolerant than Kenland. The 2,4-D tolerance following the 6th selection cycle was similar to the Florida population and tolerance was increased following 7 and 8 cycles of selection by removing plants showing 2,4-D injury and doubling the rate of 2,4-D used for selection.

Yield and forage quality were evaluated in …