Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Entire DC Network

C-Met Initiates Epithelial Scattering Through Transient Calcium Influxes And Nfat-Dependent Gene Transcription, Peter R. Langford Dec 2011

C-Met Initiates Epithelial Scattering Through Transient Calcium Influxes And Nfat-Dependent Gene Transcription, Peter R. Langford

Theses and Dissertations

Hepatocyte growth factor (HGF) signaling drives epithelial cells to scatter by breaking cell-cell adhesions and migrating as solitary cells, a process that parallels epithelial-mesenchymal transition. HGF binds and activates the c-Met receptor tyrosine kinase, but downstream signaling required for scattering remains poorly defined. This study addresses this shortcoming in a number of ways.A high-throughput in vitro drug screen was employed to identify proteins necessary in this HGF-induced signaling. Cells were tested for reactivity to HGF stimulation in a Boyden chamber assay. This tactic yielded several small molecules that block HGF-induced scattering, including a calcium channel blocker. Patch clamping was used …


Identification Of Novel Stat3 Target Genes Associated With Oncogenesis, Rachel Haviland Nov 2011

Identification Of Novel Stat3 Target Genes Associated With Oncogenesis, Rachel Haviland

USF Tampa Graduate Theses and Dissertations

Cytokine and growth factor signaling pathways involving STAT3 are frequently constitutively activated in many human primary tumors, and are known for the transcriptional role they play in controlling cell growth and cell cycle progression. However, the extent of STAT3's reach on transcriptional control of the genome as a whole remains an important question. We predicted that this persistent STAT3 signaling affects a wide variety of cellular functions, many of which still remain to be characterized.

We took a broad approach to identify novel STAT3 regulated genes by examining changes in the genome-wide gene expression profile by microarray, using cells expressing …


Developmental Deregulation And Tumorigenesis Inhibition In 14-3-3zeta Knockout Mouse, Jun Yang Aug 2011

Developmental Deregulation And Tumorigenesis Inhibition In 14-3-3zeta Knockout Mouse, Jun Yang

Dissertations & Theses (Open Access)

Cancer is second leading cause of death in the United States. Improving cancer care through patient care, research, education and prevention not only saves lives, but reduces health care cost as well. Breast cancer is the most leading cause of cancer incidence and cancer related death in women of the United States. 14-3-3s are a family of conserved proteins ubiquitously expressed in all eukaryotic organisms. They form complexes with hundreds of proteins by binding to specific phospho-serine/threonine containing motifs. In this way they regulate a variety of cellular processes and are involved in many human diseases especially cancer to our …


Changes In Expression Of Akt Pathway Proteins Following Treatment With Rg3 In Vitro, Kathryn Schalkoff Aug 2011

Changes In Expression Of Akt Pathway Proteins Following Treatment With Rg3 In Vitro, Kathryn Schalkoff

All Theses

To assess changes in AKT pathway signaling, a recombinant protein of the G3 domain of rat laminin-5 (rG3) that specifically binds the alpha subunit of integrins α6β1 and α6β4 expressed on cancer cells (e.g., MDA-MB-231) was produced. This recombinant protein is believed to interrupt the intracellular signaling events of the AKT pathway, causing a decrease in proliferation and survival of cells after treatment. Viability assays confirmed an apoptotic effect of rG3 on cells in a dose-dependent manner. However, data from gene expression studies of Caspase-9, GRB10, and CDKNIB proved non-conclusive that rG3 is acting upon gene expression, leading to the …


Dissecting The Molecular Role Of Distinct Binding Interfaces On The Retinoblastoma Tumor Suppressor In Growth Control And Tumorigenesis., Matthew J. Cecchini Jun 2011

Dissecting The Molecular Role Of Distinct Binding Interfaces On The Retinoblastoma Tumor Suppressor In Growth Control And Tumorigenesis., Matthew J. Cecchini

Electronic Thesis and Dissertation Repository

The retinoblastoma tumor suppressor protein (pRB) functions to maintain proliferative control and act as a barrier to tumorigenesis. pRB is capable of regulating E2F transcription factors to mediate control of proliferation through transcriptional regulation of S-phase target gene expression. In addition, pRB can stabilize the CDK inhibitor p27 through an interaction with two ubiquitin ligase complexes. Further, pRB is capable of forming a unique interaction with E2F1 termed the ‘specific’ interaction that is capable of blocking E2F1 induced apoptosis. These functions of pRB are mediated by distinct binding interfaces and their contributions to the overall functionality of pRB are not …


Antioxidants In Cancer Research And Prevention: Assay Comparison, Structure-Function Analysis, And Food Product Analysis, Andrew Robert Garrett Jun 2011

Antioxidants In Cancer Research And Prevention: Assay Comparison, Structure-Function Analysis, And Food Product Analysis, Andrew Robert Garrett

Theses and Dissertations

Recent epidemiological studies have suggested that the development and progression of several chronic diseases may be initiated or augmented by oxidative stress. Reactive oxygen species and reactive nitrogen species react readily with and can damage nucleic acids, proteins, and lipids. While biological systems are equipped antioxidant defenses to cope with oxidative stress, oxidative damage may still occur when oxidative stress overwhelms antioxidant defenses. This damage, if left unchecked, may lead to a variety of degenerative diseases, including heart disease, Alzheimer's Disease, Parkinson's Disease and cancer. Several assays have been designed to describe the antioxidant activity of various phytochemicals, vitamins, and …


Atm Signaling To Tsc2: Mechanisms And Implications For Cancer Therapy, Angela Alexander May 2011

Atm Signaling To Tsc2: Mechanisms And Implications For Cancer Therapy, Angela Alexander

Dissertations & Theses (Open Access)

Ataxia telangiectasia mutated (ATM) is a critical component of the cellular response to DNA damage, where it acts as a damage sensor, and signals to a large network of proteins which execute the important tasks involved in responding to the damage, namely inducing cell cycle checkpoints, inducing DNA repair, modulating transcriptional responses, and regulating cell death pathways if the damage cannot be repaired faithfully. We have now discovered that an additional novel component of this ATM-dependent damage response involves induction of autophagy in response to oxidative stress. In contrast to DNA damage-induced ATM activation however, oxidative stress induced ATM, occurs …


Zinc Oxide Nanoparticles As Potential Novel Anticancer Therapies, Janet C. Layne May 2011

Zinc Oxide Nanoparticles As Potential Novel Anticancer Therapies, Janet C. Layne

Boise State University Theses and Dissertations

Nanoparticles (NP) are increasingly being recognized for their utility in the field of medicine, including use as drug carriers and imaging tools. We demonstrated that ZnO NP preferentially kill cancerous cells of the T cell lineage, and extended this research to evaluate other cells types, including normal and malignant B cells, and normal and malignant breast and prostate epithelial cells. Preferential ZnO nanoparticle cytotoxicity occurred for multiple types of cancer cells, but was most pronounced for non-adherent cells of hematopoietic lineage. Normal T and B lymphocytes showed the greatest resistance to NP toxicity, followed by normal breast epithelial cells, and …


The Specific Role Of The Mll Cxxc Domain In Mll Fusion Protein Function, Laurie Ellen Risner Jan 2011

The Specific Role Of The Mll Cxxc Domain In Mll Fusion Protein Function, Laurie Ellen Risner

Dissertations

The MLL gene was first identified because it is involved in chromosome translocations which produce novel fusion proteins that cause leukemia. The CXXC domain of MLL is a cysteine rich DNA binding domain with specificity for binding unmethylated CpG-containing DNA. The CXXC domain is retained in oncogenic MLL fusions, and is absolutely required for the fusions to cause leukemia. This project explored the role of the CXXC domain by introducing structure-informed point mutations within the MLL CXXC domain that disrupt DNA binding, and by performing domain swap experiments in which different CXXC domains from other proteins, including DNMT1, CGBP and …


Notch-1 Specifically Activates Erk1/2 In Multiple Breast Cancer Subtypes, Allison Schuyler Rogowski Jan 2011

Notch-1 Specifically Activates Erk1/2 In Multiple Breast Cancer Subtypes, Allison Schuyler Rogowski

Master's Theses

Notch-1 is a cell fate regulatory protein and a potent breast oncogene. Notch-1 and its ligand Jagged-1 are over-expressed in human breast cancers that are associated with poor overall survival (Reedijk, Odorcic et al. 2005). Deregulated Notch signaling may contribute to tumorigenesis by increasing proliferation, inhibiting differentiation, and preventing apoptosis (Miele, Golde et al. 2006). The mitogen-activated protein kinase (MAPK) pathway is a critical cell signaling pathway that has been implicated in the development and progression of cancer (Hanahan and Weinberg 2000). Four major MAPK pathways are involved in both cell growth and apoptosis. The regulation of these pathways is …


The Impact Of Folate Deficiency On The Base Excision Repair Pathway: Analysis Of Enzyme Coordination In Response To Dna Damage And Imbalanced Repair, Amanda Pilling Jan 2011

The Impact Of Folate Deficiency On The Base Excision Repair Pathway: Analysis Of Enzyme Coordination In Response To Dna Damage And Imbalanced Repair, Amanda Pilling

Wayne State University Dissertations

The condition of folate deficiency has been implicated in carcinogenesis, with the strongest evidence formulated in colon cancer. The role of folate in DNA repair, DNA synthesis and methylation reactions renders this nutrient an valuable target for studying the onset and progression of cancer. Using molecular techniques to determine gene and protein expression, enzyme activity and methylation status elucidates the mechanism of DNA repair and damage in folic acid deficient animals in response to carcinogen. The findings presented in this study indicate failure to remove and repair damage in the condition of folate deficiency and suggest that the accumulation of …


Hedgehog Signaling: A Potential Therapeutic Target For Non-Small Cell Lung Cancer, Ma'in Yehya Maitah Jan 2011

Hedgehog Signaling: A Potential Therapeutic Target For Non-Small Cell Lung Cancer, Ma'in Yehya Maitah

Wayne State University Dissertations

The American Cancer Society estimated that 222,520 Americans were diagnosed with lung cancer and 157,300 died of lung cancer in 2010 (Jemal et al. 2009, 225-249;Jemal et al. 2011, 69-90). The clinical outcome of patients diagnosed with non-small cell lung cancer (NSCLC), the major lung cancer sub-types, is very poor, which calls for innovative research for finding novel therapeutic targets and agents for better treatment outcome.

Emerging evidences have suggested that a phenomenon called Epithelial-to-Mesenchymal Transition (EMT), which shares similar molecular characteristics with cancer stem-like cells, contributes to lung cancer treatment failure. In view of the fact that EMT process …


Altered Leptin Signaling On Dendritic Cells As A Potential Mechanism For Cancer Immunotherapy, Lorena Y. De Los Santos Jan 2011

Altered Leptin Signaling On Dendritic Cells As A Potential Mechanism For Cancer Immunotherapy, Lorena Y. De Los Santos

Open Access Theses & Dissertations

Leptin is a pleiotropic hormone synthesized primarily by white adipocytes and its receptors are expressed in a variety of tissues and cells such as in the hypothalamus and cells of the immune system. Multiple cell types can produce a considerable amount of leptin such as skeletal muscle, placenta, and osteoblasts to name a few and its synthesis has been shown to be regulated by sex hormones and a broad range of inflammatory mediators. Although leptin has been shown to directly affect immune response, we are interested in how leptin affects dendritic cell function and their ability to induce a proper …


A Study Of Complex Systems: From Magnetic To Biological, Douglas Carroll Lovelady Jan 2011

A Study Of Complex Systems: From Magnetic To Biological, Douglas Carroll Lovelady

USF Tampa Graduate Theses and Dissertations

This work is a study of complex many-body systems with non-trivial interactions. Many such systems can be described with models that are much simpler than the real thing but which can still give good insight into the behavior of realistic systems. We take a look at two such systems. The first part looks at a model that elucidates the variety of magnetic phases observed in rare-earth heterostructures at low temperatures: the six-state clock model. We use an ANNNI-like model Hamiltonian that has a three dimensional parameter space and yields two-dimensional multiphase regions in this space. A low-temperature expansion of the …


The Role Of Trm9 In Stress Responses, Ashish Ravindra Patil Jan 2011

The Role Of Trm9 In Stress Responses, Ashish Ravindra Patil

Legacy Theses & Dissertations (2009 - 2024)

Cells need to respond appropriately to environmental changes in order to maintain homeostasis. The cellular response to an environmental stress is regulated at transcriptional, translational and post translational levels. The tRNA, which acts as an adaptor molecule between the mRNA and the protein, plays an important role in the translational regulation of cellular responses to stress and is one of the most heavily modified biomolecules. In Saccharomyces cerevisiae , the wobble uracil of the tRNA(3'-UCU-5') Arg, tRNA(3'-UUC-5') Glu and certain other specific tRNAs are modified to 5-methoxycarbonylmethyluridine (mcm5U) and 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) residues by the tRNA methyltransferase 9 (Trm9). Modifications at …


Loss Of Bloom Syndrome Protein Causes Destabilization Of Genomic Architecture And Is Complemented By Ectopic Expression Of Escherichia Coli Recg In Human Cells, Michael Wayne Killen Jan 2011

Loss Of Bloom Syndrome Protein Causes Destabilization Of Genomic Architecture And Is Complemented By Ectopic Expression Of Escherichia Coli Recg In Human Cells, Michael Wayne Killen

University of Kentucky Doctoral Dissertations

Genomic instability driven by non-allelic homologous recombination (NAHR) provides a realistic mechanism that could account for the numerous chromosomal abnormalities that are hallmarks of cancer. We recently demonstrated that this type of instability could be assayed by analyzing the copy number variation of the human ribosomal RNA gene clusters (rDNA). Further, we found that gene cluster instability (GCI) was present in greater than 50% of the human cancer samples that were tested. Here, data is presented that confirms this phenomenon in the human GAGE gene cluster of those cancer patients. This adds credence to the hypothesis that NAHR could be …