Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Chemical Engineering

Simulation

Articles 1 - 30 of 38

Full-Text Articles in Entire DC Network

Integrating Galectin-3 Into A Computational Model Of Cardiac Fibrosis Progression, Adam Pieratt May 2024

Integrating Galectin-3 Into A Computational Model Of Cardiac Fibrosis Progression, Adam Pieratt

Chemical Engineering Undergraduate Honors Theses

Cardiac fibrosis, a large contributor to heart failure, is the excessive accumulation of extracellular matrix in response to stress or injury. There are no approved treatments for cardiac fibrosis, and targeting specific species involved creates complex problems for drug development, so a computational model of the cardiac fibroblast signaling network can be used to observe the interactions involved in the progression of cardiac fibrosis. In this paper, a new protein called galectin-3 is integrated into this existing model, and connections are established to expand the coverage of the network. The additions are described, simulated using Netflux biological system simulation software, …


Dpd Guided Insight On The Formation Process Of Polyethersulfone Membranes By Nonsolvent Induced Phase Separation And The Effects Of Additives, Eric Ledieu May 2023

Dpd Guided Insight On The Formation Process Of Polyethersulfone Membranes By Nonsolvent Induced Phase Separation And The Effects Of Additives, Eric Ledieu

Graduate Theses and Dissertations

Dissipative particle dynamics (DPD), a coarse grain simulation method, was applied to the membrane formation process of non-solvent induced phase separation (NIPS) to gain further insight on the mechanism of certain variables and how they affect the final morphology. NIPS involves two solutions, an organic polymer dissolved in an organic solvent colloquially called the dope and an aqueous coagulation bath, brought into contact with one another. The solvents then mix, causing the polymer to fall out of solution as an asymmetric membrane with a dense surface layer and a more open subsurface layer in response to the decreasing solubility. Polyethersulfone …


Modeling And Simulation Of A Process That Converts Ethane To Ethylene And Ethylene To Low Density Polyethylene, Ernest Bosire Mokaya Jan 2023

Modeling And Simulation Of A Process That Converts Ethane To Ethylene And Ethylene To Low Density Polyethylene, Ernest Bosire Mokaya

Graduate Theses, Dissertations, and Problem Reports

Ethylene is a critical feedstock and a major building block in the petrochemical industry that is used in synthesizing important products like polyethylene, ethanol, ethylene oxide, ethylene dichloride and ethylbenzene. With increasing demand of plastics, production of ethylene and subsequently polyethylene has increased globally. This thesis conducts the modeling and simulation of an integrated process that utilizes ethane as the primary feedstock to produce ethylene and the subsequent polymerization of ethylene to low-density polyethylene (LDPE). The process combines two different processes into one integrated process: (1) conversion of ethane to ethylene and (2) conversion of ethylene to LDPE. First, a …


Evaluating Electrification Of Fossil Fuel-Fired Boilers For Decarbonization Using Discrete Event Simulation, Nahian Ismail Chowdhury Jan 2023

Evaluating Electrification Of Fossil Fuel-Fired Boilers For Decarbonization Using Discrete Event Simulation, Nahian Ismail Chowdhury

Graduate Theses, Dissertations, and Problem Reports

Decarbonizing fossil fuel usage is crucial in mitigating the impacts of climate change. CO2, which comprises the major portion of greenhouse gas, is emitted from burning fossil fuels. One of the significant sources of fossil fuel user is industrial process heating, and most of the heating in industrial processes is achieved through boilers. Electrification is a promising solution for decarbonizing these boilers, as it enables renewable energy sources to generate electricity, which can then be used to power the electric boilers. The electrification of boilers can reduce greenhouse gas emissions, improve air quality, and increase energy efficiency. However, it requires …


Designing The Electrode Geometry And Electrolyte To Enhance The Product Selectivity And Activity In Carbon Dioxide Electroreduction, Samaneh Sharifi Golru Jun 2022

Designing The Electrode Geometry And Electrolyte To Enhance The Product Selectivity And Activity In Carbon Dioxide Electroreduction, Samaneh Sharifi Golru

Dissertations, Theses, and Capstone Projects

Excessive utilization of the fossil fuels due to the rapid growth of the global population has resulted in a dramatic increase in the carbon dioxide (CO2) level in the atmosphere which is the main reason for global warming and climate change. Therefore, green technologies are in high demand to develop carbon-neutral energy cycles. In this regard, CO2 electroreduction (CO2ER) has been proposed as a promising approach for CO2 utilization. CO2ER can mitigate the CO2 level in the atmosphere as well as produce value-added chemicals and fuels at ambient conditions. Despite the benefits of CO2 …


Defining Interactions Between Deformable Dna Origami And Lipid Bilayers Through Molecular Dynamics Simulation, Zachary A. Loyd May 2022

Defining Interactions Between Deformable Dna Origami And Lipid Bilayers Through Molecular Dynamics Simulation, Zachary A. Loyd

Chancellor’s Honors Program Projects

No abstract provided.


Predicting Tight Junction Formation Via Claudin Chimeras, Patrick Matthew Marsch May 2021

Predicting Tight Junction Formation Via Claudin Chimeras, Patrick Matthew Marsch

Theses - ALL

Tight junctions are vital to epithelial and endothelial barrier functions aiding in ion transport and preventing toxins from crossing into paracellular space. Claudins, made of four transmembrane helices and two extracellular loops, are a major part of the assembly of tight junctions along with other transmembrane proteins. The dimer interactions of two members of the 27-known members of the claudin family—claudin-2 and claudin-4—were analyzed. We created claudin chimera by switching claudin 2’s extracellular loops with claudin 4’s. The chimeras were analyzed using molecular dynamic simulations by comparing them to the natural claudins. This analysis provided new insight into the assembly …


Design And Analysis Of A Process To Convert Methanol Into Dimethyl Ether, Elisa M. White May 2021

Design And Analysis Of A Process To Convert Methanol Into Dimethyl Ether, Elisa M. White

Honors Theses

A recent economic downturn led to the loss of a contract for a company that sells methanol. The company has two options to recover some of the profit lost from the contract termination. One option is to sell the excess methanol at the spot market price, and the second option is to implement a process to convert the excess methanol into dimethyl ether. This project investigated the implementation of a process to convert the methanol from the lost contract into dimethyl ether. The process was simulated in AVEVA Process Simulation to estimate the size of equipment needed. A toller provided …


Design, Analysis, And Optimization Of A Process To Produce Dimethyl Ether From Methanol, Thomas Mathwig Apr 2021

Design, Analysis, And Optimization Of A Process To Produce Dimethyl Ether From Methanol, Thomas Mathwig

Honors Theses

The company that the engineering team works for is facing a contract loss with one of its customers of methanol. To avoid economic losses, a process has been proposed for converting the unused methanol to dimethyl ether (DME) through a dehydration reaction. After a preliminary simulation of the base case and optimization of the distillation column, an Equivalent Annual Operating Cost (EAOC) of $140,000 was calculated for the column. The EAOC was the sum of the annualized capital investment and the annual operating cost. Determining the process to be worth pursuing, a Toller was brought in to provide rental equipment …


Cyclic Sequential Adsorption Desorption/Thermal-Catalytic Oxidation Of Volatile Organic Compounds: Material Development, Process Advancement/Improvement, And Numerical Modeling, Simulation And Optimization, Busuyi Ojo Adebayo Jan 2021

Cyclic Sequential Adsorption Desorption/Thermal-Catalytic Oxidation Of Volatile Organic Compounds: Material Development, Process Advancement/Improvement, And Numerical Modeling, Simulation And Optimization, Busuyi Ojo Adebayo

Doctoral Dissertations

"Volatile organic compounds (VOCs) are a group of useful organic chemicals but when emitted have contributed to air pollution. They affect human health, cause environmental degradation and contaminate our waters and soils, so they need to be controlled. When they exist in dilute concentrations, abatement becomes challenging, thus requiring advanced abatement methods, e.g., sequential adsorption desorption/thermal-catalytic oxidation process. The overall goal of this research was to abate dilute streams of VOCs via the process. The specific objectives were to 1) develop novel adsorbent/catalyst dual-function materials (DFMs) for the process, 2) improve the operability of a one-bed-one-column reactor configuration for the …


Design And Cost Analysis Of Acrylic Acid Plant, Adam Ferrier May 2019

Design And Cost Analysis Of Acrylic Acid Plant, Adam Ferrier

Chemical Engineering Undergraduate Honors Theses

The purpose of this project was to model and design a plant to produce 75,000 tons per year of acrylic acid. Using the design in section B.9 of Richard Turton’s Analysis, Synthesis, and Design of Chemical Processes as a starting point, a plant was designed based around the partial oxidation of propylene to acrylic acid. The final plant design produces about 86,000 tons per year of acrylic acid. Using an interest rate of 10%, the plant has a discounted cash flow rate of return of 32% over 2 years of startup and 10 years of operation. Attached is an executive …


Extraction Of Thorium Dioxide And Other Ree Oxides From Monazite Ore, Bradley M. Bennett, Julia Johnson, Kelsey Hay, Chelsea Connolly-Horton May 2019

Extraction Of Thorium Dioxide And Other Ree Oxides From Monazite Ore, Bradley M. Bennett, Julia Johnson, Kelsey Hay, Chelsea Connolly-Horton

Chancellor’s Honors Program Projects

No abstract provided.


Transient Multiphase Flow Simulation For Unloading Of Frac Hit Gas Wells, Miguel Angel Cedeno Moreno Jan 2019

Transient Multiphase Flow Simulation For Unloading Of Frac Hit Gas Wells, Miguel Angel Cedeno Moreno

Doctoral Dissertations

"This work seeks to develop a fully step-by-step transient multiphase flow simulation valid for unloading gas wells using nitrogen. It studies the behavior of nitrogen for unloading horizontal gas wells with gas injection in the annulus. The work investigates unloading non-Newtonian fluids such as those which invade offset wells when a frac hit occurs during hydraulic fracturing operations in unconventional wells. The effect of varying tubing depth and injection pressure are included in the study.

Results show that as the plastic viscosity increases, the nitrogen volume and time to unload will be increased. As tubing depth increases, the nitrogen volume …


Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu Dec 2018

Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this paper is to better understand the behavior of smoke movement in an atrium. Thus gives first responders and civilians in and out of building a better understanding

With the advancements of modern technology, computers and softwares make simulation models possible such as fire models to simulate fire and smoke movements. In this paper, a computational fluid dynamic (CFD) software Fire Dynamic Simulator (FDS) is used to conduct a series of atrium tests to investigate the effectiveness of smoke exhaust systems. FDS solves the Navier-Stokes equations appropriate for low speed flows (Ma < 0.3) with an emphasis on smoke, heat transport and CO2 concentrations from fires. The default turbulence model used in FDS simulation is the Large Eddy Simulation (LES), which is the solution of Navier-Stokes equations at low speed.

The compartment tested was 9 …


Mechanistic Modeling Of Nanoparticle-Stabilized Supercritical Co2 Foams And Its Implication In Field-Scale Eor Applications, Doris Patricia Ortiz Maestre Nov 2017

Mechanistic Modeling Of Nanoparticle-Stabilized Supercritical Co2 Foams And Its Implication In Field-Scale Eor Applications, Doris Patricia Ortiz Maestre

LSU Master's Theses

Previous experimental studies show that nanoparticle-stabilized supercritical CO2 foams (or, NP CO2 foams) can be applied as an alternative to surfactant foams, in order to reduce CO2 mobility in gas injection enhanced oil recovery (EOR). These nanoparticles, if chosen correctly, can be an effective foam stabilizer attached at the fluid interface in a wide range of physicochemical conditions.

By using NP CO2 foam experiments available in the literature, this study performs two tasks: (i) presenting how a mechanistic foam model can be used to fit experimental data and determine required model parameters, and (ii) investigating the …


Modelling And Simulation Of Hydrogen Production Via Membrane Reactor, Aya Abdel-Hamid Smail Mourad Nov 2017

Modelling And Simulation Of Hydrogen Production Via Membrane Reactor, Aya Abdel-Hamid Smail Mourad

Chemical and Petroleum Engineering Theses

A membrane reactor is a promising device to produce pure hydrogen and enrich CO2 from syngas. A simulation study of a double tubular catalytic membrane reactor for the water-gas shift reaction (WGS) under steady-state operation is presented in this work. The membrane consists of a dense Pd layer (selective to H2) deposited on a porous glass cylinder support. The reaction side was filled with a commercial iron-chromium oxide catalyst, designed as Girdler G-3. The mass of the catalyst was 12.1 g and the height of the catalyst bed was 8 cm. The WGS model was carried out …


Role Of Surface Factors On Heterogeneous Ice Nucleation, Brittany Glatz Oct 2017

Role Of Surface Factors On Heterogeneous Ice Nucleation, Brittany Glatz

All Dissertations

Heterogeneous ice nucleation is the primary pathway for ice formation. However, the detailed molecular mechanisms by which surfaces promote or hinder ice nucleation are not well understood. We present results from extensive molecular dynamics and forward flux sampling (FFS) simulations of ice nucleation near modified surfaces. The surfaces are modified to investigate the effects of different surface factors on the rate and mechanism of ice nucleation. We find that the surface charge distribution has significant effects on ice nucleation. We also investigate the interplay of surface lattice and hydrogen bonding properties in affecting ice nucleation. We find that lattice matching …


Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson Aug 2017

Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson

Masters Theses

Biomass conversion to hydrocarbon fuels requires significant amounts of hydrogen. Fossil resources typically supply hydrogen via steam reforming. A new technology called microbial electrolysis cells (MECs) has emerged which can generate hydrogen from organic sources and biomass. The thermochemical route to fuels via pyrolysis generates bio-oil aqueous phase (BOAP) which can be used to make hydrogen. A process engineering and economic analysis of this technology was conducted for application in biorefineries of the future. Steam methane reforming, bio-oil separation and microbial electrolysis unit operations were simulated in Aspen Plus to derive the mass and energy balance for conversion of biomass. …


Multiscale Modeling Of Electrolytes For Energy Storage And Conversion, Fatemeh Sepehr Dec 2016

Multiscale Modeling Of Electrolytes For Energy Storage And Conversion, Fatemeh Sepehr

Doctoral Dissertations

Fuel cells, redox flow batteries, and secondary ion batteries are under active investigation to fulfill the requirements of efficient and sustainable energy storage and conversion technologies. The discovery of high-performance stable electrolytes that are relatively cheap and versatile is crucial to the commercialization of these electrochemical devices and necessitates a comprehensive understanding of the materials (i.e., from the atomistic to continuum levels). This dissertation is on multiscale modeling and simulations of several electrolytes under consideration in vanadium redox flow batteries (VRFBs), alkaline fuel cells (AFCs), or secondary magnesium batteries.

The hydrated structure and associated solvation Gibbs energies were determined for …


Experimental And Modeling Studies In Membrane Distillation, Lin Li May 2016

Experimental And Modeling Studies In Membrane Distillation, Lin Li

Dissertations

A variety of microporous hydrophobic flat sheet membranes of polyvinylidene fluoride (PVDF) and expanded-polytetrafluoroethylene (e-PTFE) are studied to evaluate the influence of membrane properties on their performance in desalination by direct contact membrane distillation (DCMD) and vacuum membrane distillation (VMD) processes. The membrane thickness is varied between 23 μm to 125 μm; the pore size is varied from 0.05 μm to 0.45 μm. The porosity is generally high in the range of 0.7 - 0.8. DCMD experiments are performed over a hot brine temperature range of 65 °C to 85 °C and distillate temperature at 25 °C for various brine …


Heat Transfer Mechanisms In Water-Based Nanofluids., Masoudeh Ahmadi Dec 2015

Heat Transfer Mechanisms In Water-Based Nanofluids., Masoudeh Ahmadi

Electronic Theses and Dissertations

Nanofluids are a class of heat transport fluids created by suspending nano-scaled metallic or nonmetallic particles into a base fluid. Some experimental investigations have revealed that the nanofluids have remarkably higher thermal conductivities than those of conventional pure fluids and are more suited for practical application than the existing techniques of heat transfer enhancement using millimeter and/or micrometer-sized particles in fluids. Use of nanoparticles reduces pressure drop, system wear, and overall mass of the system leading to a reduction in costs over existing enhancement techniques. In this work, the heat transfer coefficient is determined experimentally using copper oxide (CuO) based …


Photonic Crystal-Based Flow Cytometry, Justin William Stewart Oct 2014

Photonic Crystal-Based Flow Cytometry, Justin William Stewart

USF Tampa Graduate Theses and Dissertations

Photonic crystals serve as powerful building blocks for the development of lab-on-chip devices. Currently they are used for a wide range of miniaturized optical components such as extremely compact waveguides to refractive-index based optical sensors. Here we propose a new technique for analyzing and characterizing cells through the design of a micro-flow cytometer using photonic crystals. While lab scale flow cytometers have been critical to many developments in cellular biology they are not portable, difficult to use and relatively expensive. By making a miniature sensor capable of replicating the same functionality as the large scale units with photonic crystals, we …


Turbulent Transition In Electromagnetically Levitated Liquid Metal Droplets, Jie Zhao Aug 2014

Turbulent Transition In Electromagnetically Levitated Liquid Metal Droplets, Jie Zhao

Masters Theses

The condition of fluid flow has been proven to have a significant influence on a wide variety of material processes. In electromagnetic levitation (EML) experiments, the internal flow is driven primarily by electromagnetic forces. In 1-g, the positioning forces are very strong and the internal flows are turbulent. To reduce the flows driven by the levitation field, experiments may be performed in reduced gravity and parabolic flights experiments have been adopted as the support in advance. Tracer particles on the surface of levitated droplets in EML experiment performed by SUPOS have been used to investigate the transition from laminar to …


Discrete Element Method Based Scale-Up Model For Material Synthesis Using Ball Milling, Priya Radhi Santhanam Jan 2014

Discrete Element Method Based Scale-Up Model For Material Synthesis Using Ball Milling, Priya Radhi Santhanam

Dissertations

Mechanical milling is a widely used technique for powder processing in various areas. In this work, a scale-up model for describing this ball milling process is developed. The thesis is a combination of experimental and modeling efforts.

Initially, Discrete Element Model (DEM) is used to describe energy transfer from milling tools to the milled powder for shaker, planetary, and attritor mills. The rolling and static friction coefficients are determined experimentally. Computations predict a quasi- steady rate of energy dissipation, Ed, for each experimental configuration. It is proposed that the milling dose defined as a product of Ed and milling …


Numerical Investigation Of Cryopreserved Zebrafish Sperm Cell Activation In Microchannels, Thomas Foster Scherr Jan 2014

Numerical Investigation Of Cryopreserved Zebrafish Sperm Cell Activation In Microchannels, Thomas Foster Scherr

LSU Doctoral Dissertations

This aim of this research project is to probe the activation process of zebrafish spermatozoa. Zebrafish are a model species for biological engineering applications, and the cryopreservation of their reproductive cells allows for inexpensive cataloging and maintenance of valuable biological material. Evaluation of cryopreservation protocols for aquatic sperm cells is typically accomplished by motility analysis after subjecting cells to a cryopreservation treatment. In zebrafish sperm cells, motility is initiated when cells come into contact with a hypo-osmotic environment. Subsequent activation analysis is currently done manually and brings with it an inherent difficulty and error. This process is slow and not …


The Effects Of Mismatches And Probe Tethering Configurations On The Stability Of Dna Duplexes On Surfaces, Kyle Evan Pratt Jun 2013

The Effects Of Mismatches And Probe Tethering Configurations On The Stability Of Dna Duplexes On Surfaces, Kyle Evan Pratt

Theses and Dissertations

DNA microarrays are chip-based, analysis tools which can perform hundreds of thousands of parallel assays to determine the identity of genes or gene expression levels present in a sample. They have been identified as a key technology in genomic sciences and emergent medical techniques; however, despite their abundant use in research laboratories, microarrays have not been used in the clinical setting to the fullest potential due to the difficulty of obtaining reproducible results. Microarrays work on the principle of DNA hybridization, and can only be as accurate as this process is robust. Fundamental, molecular-level understanding of hybridization on surfaces is …


Protein-Surface Interactions With Coarse-Grain Simulation Methods, Shuai Wei Mar 2013

Protein-Surface Interactions With Coarse-Grain Simulation Methods, Shuai Wei

Theses and Dissertations

The interaction of proteins with surfaces is a major process involved in protein microarrays. Understanding protein-surface interactions is key to improving the performance of protein microarrays, but current understanding of the behavior of proteins on surfaces is lacking. Prevailing theories on the subject, which suggest that proteins should be stabilized when tethered to surfaces, do not explain the experimentally observed fact that proteins are often denatured on surfaces. This document outlines several studies done to develop a model which is capable of predicting the stabilization and destabilization of proteins tethered to surfaces. As the start point of the research, part …


Inkjet Printability Of Electronic Materials Important To The Manufacture Of Fully Printed Otfts, Sooman Lim Aug 2012

Inkjet Printability Of Electronic Materials Important To The Manufacture Of Fully Printed Otfts, Sooman Lim

Dissertations

In this study, the inkjet printability of materials important to fabricating OTFTs was researched. In order to understand the jetting evolution of inkjet printed inks, simulations were performed with a nano copper and nano particle silver ink. To predict the inkjettability of the nano copper ink, Z and Oh numbers at different temperatures were determined. The results from the simulation studies were compared to experimental results obtained using a Dimatix inkjet printer. For the semiconductor ink, the inkjet printability of two organic semiconductors, P2TDC17FT4 (poly[(3,7-diheptadecylthieno[3,2-b]thieno[2',3':4,5]thieno[2,3-d]thiophene-2,6-diyl)[2,2'-bithiophene]-5,5'-diyl] dissolved in 1,2-dichlorobenzene and P3HT (poly-3 hexylthiophene) were compared to determine the relationship between drop …


Multi-Processor Computation Of Thrombus Growth And Embolization In A Model Of Blood-Biomaterial Interaction Based On Fluid Dynamics, Brandon Thomas Andersen Apr 2012

Multi-Processor Computation Of Thrombus Growth And Embolization In A Model Of Blood-Biomaterial Interaction Based On Fluid Dynamics, Brandon Thomas Andersen

Theses and Dissertations

This work describes the development and testing of a real-time three-dimensional computational fluid dynamics simulation of thrombosis and embolization to be used in the design of blood-contacting devices. Features of the model include the adhesion and aggregation of blood platelets on device material surfaces, shear and chemical activation of blood platelets, and embolization of platelet aggregates due to shear forces. As thrombus develops, blood is diverted from its regular flow field. If shear forces on a thrombus are sufficient to overcome the strength of adhesion, the thrombus is dislodged from the wall. Development of the model included preparing thrombosis and …


Design Of Novel Drug Delivery System And Optimal Dosage Regimens, Kwang Seok Kim Aug 2010

Design Of Novel Drug Delivery System And Optimal Dosage Regimens, Kwang Seok Kim

Dissertations

Three representative drug delivery systems were analyzed to emphasize the roles of mathematical models and computer-aided simulations in pharmaceutical research. In the first project, a protocol was developed so that the optimal regimen, consisting of the intravenous boluses and subsequent infusion of theophylline, could be obtained once information on the pharmacokinetics became available. The method was based on a two-compartment model of the human body. A module was created and posted on a website for free access. The second project dealt with the transdermal heat-assisted delivery of corticosterone. Heat conduction and drug diffusion through the patch and the skin were …