Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

System-Level Synthesis Of Mems Via Genetic Programming And Bond Graphs, Z. Fan, K. Seo, Jianjun Hu, R. Rosenberg, E. Goodman Jun 2015

System-Level Synthesis Of Mems Via Genetic Programming And Bond Graphs, Z. Fan, K. Seo, Jianjun Hu, R. Rosenberg, E. Goodman

Jianjun Hu

No abstract provided.


Optimal Design And Simulation Of A Cross-Plane Micro-Thermoelectric Generator, Xiao Zhu, De Li, Ben Liu, Jiang Zhe Apr 2015

Optimal Design And Simulation Of A Cross-Plane Micro-Thermoelectric Generator, Xiao Zhu, De Li, Ben Liu, Jiang Zhe

Dr. Jiang Zhe

No abstract provided.


Mems Resonant Magnetic Field Sensor Based On An Aln/Fegab Bilayer Nano-Plate Resonator, Yu Hui, Tianxiang Nan, Nian Sun, Matteo Rinaldi Mar 2013

Mems Resonant Magnetic Field Sensor Based On An Aln/Fegab Bilayer Nano-Plate Resonator, Yu Hui, Tianxiang Nan, Nian Sun, Matteo Rinaldi

Tianxiang Nan

This paper reports on the first demonstration of an ultra-miniaturized, high frequency (215 MHz) and high sensitivity MEMS resonant magnetic field sensor based on an AlN/FeGaB bilayer nano-plate resonator capable of detecting magnetic field at nano-Tesla level. Despite of the reduced volume and the high operating frequency of the sensor, high electromechanical performances were achieved (quality factor Q ≈ 511 and electromechanical coupling coefficient kt² ≈ 1.63%). This first prototype was characterized for different magnetic field levels from 0 to 152 Oe showing a frequency sensitivity of ~ 1 Hz/nT and a limit of detection of ~ 10 nT.


Mems Resonant Magnetic Field Sensor Based On An Aln/Fegab Bilayer Nano-Plate Resonator, Yu Hui, Tianxiang Nan, Nian Sun, Matteo Rinaldi Feb 2013

Mems Resonant Magnetic Field Sensor Based On An Aln/Fegab Bilayer Nano-Plate Resonator, Yu Hui, Tianxiang Nan, Nian Sun, Matteo Rinaldi

Matteo Rinaldi

This paper reports on the first demonstration of an ultra-miniaturized, high frequency (215 MHz) and high sensitivity MEMS resonant magnetic field sensor based on an AlN/FeGaB bilayer nano-plate resonator capable of detecting magnetic field at nano-Tesla level. Despite of the reduced volume and the high operating frequency of the sensor, high electromechanical performances were achieved (quality factor Q ≈ 511 and electromechanical coupling coefficient kt² ≈ 1.63%). This first prototype was characterized for different magnetic field levels from 0 to 152 Oe showing a frequency sensitivity of ~ 1 Hz/nT and a limit of detection of ~ 10 nT.


Power Mems And Microengines, Alan Epstein, Stephen Senturia, G. Ananthasuresh, Arturo Ayon, Kenneth Breuer, Kuo-Shen Chen, Fredric Ehrich, Gautam Gauba, Reza Ghodssi, C. Groshenry, Stuart Jacobson, Jeffrey Lang, Chuang-Chia Lin, Amit Mehra, José Oscar Mur-Miranda, Steve Nagle, D. Orr, Ed Piekos, Martin Schmidt, Gregory Shirley, Mark Spearing, Choon Tan, Sheng-Yang Tzeng, Ian Waitz Jul 2012

Power Mems And Microengines, Alan Epstein, Stephen Senturia, G. Ananthasuresh, Arturo Ayon, Kenneth Breuer, Kuo-Shen Chen, Fredric Ehrich, Gautam Gauba, Reza Ghodssi, C. Groshenry, Stuart Jacobson, Jeffrey Lang, Chuang-Chia Lin, Amit Mehra, José Oscar Mur-Miranda, Steve Nagle, D. Orr, Ed Piekos, Martin Schmidt, Gregory Shirley, Mark Spearing, Choon Tan, Sheng-Yang Tzeng, Ian Waitz

José Oscar Mur-Miranda

MIT is developing a MEMS-based gas turbine generator. Based on high speed rotating machinery, this 1 cm diameter by 3 mm thick SiC heat engine is designed to produce 10-20 W of electric power while consuming 10 grams/hr of H2. Later versions may produce up to 100 W using hydrocarbon fuels. The combustor is now operating and an 80 W micro-turbine has been fabricated and is being tested. This engine can be considered the first of a new class of MEMS device, power MEMS, which are heat engines operating at power densities similar to those of the best large scale …