Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Assessing The Use Of Food Waste Biochar As A Biodynamic Plant Fertilizer, Rachel Mazac Jan 2016

Assessing The Use Of Food Waste Biochar As A Biodynamic Plant Fertilizer, Rachel Mazac

Departmental Honors Projects

Biochar is a charcoal-like substance produced from plant material such as food waste. Converting food waste into a useful product would mitigate environmental damage through reduced landfill inputs, reduced greenhouse gas production, and increased benefits to soils. I asked (1) if biochar improved plant growth and (2) if the effects of biochar varied among different samples of mixed food waste (batches) and between different biochar preparation times (treatments). Four independent batches of biochar were prepared with assorted, uncooked food waste collected from a university dining facility. Each batch was dried then placed in a covered ceramic pot at 260℃ for …


Emerging Investigators Series: Pyrolysis Removes Common Microconstituents Triclocarban, Triclosan, And Nonylphenol From Biosolids, J. J. Ross, Daniel Zitomer, T. R. Miller, C. A. Weirich, Patrick J. Mcnamara Jan 2016

Emerging Investigators Series: Pyrolysis Removes Common Microconstituents Triclocarban, Triclosan, And Nonylphenol From Biosolids, J. J. Ross, Daniel Zitomer, T. R. Miller, C. A. Weirich, Patrick J. Mcnamara

Civil and Environmental Engineering Faculty Research and Publications

Reusing biosolids is vital for the sustainability of wastewater management. Pyrolysis is an anoxic thermal degradation process that can be used to convert biosolids into energy rich py-gas and py-oil, and a beneficial soil amendment, biochar. Batch biosolids pyrolysis (60 minutes) revealed that triclocarban and triclosan were removed (to below quantification limit) at 200 °C and 300 °C, respectively. Substantial removal (>90%) of nonylphenol was achieved at 300 °C as well, but 600 °C was required to remove nonylphenol to below the quantification limit. At 500 °C, the pyrolysis reaction time to remove >90% of microconstituents was less than …


Biomass Catalytic Upconversion With A Metallic Catalyst Bed Under Radio Frequency Induction Heating, Mohammad Abu-Laban Jan 2016

Biomass Catalytic Upconversion With A Metallic Catalyst Bed Under Radio Frequency Induction Heating, Mohammad Abu-Laban

LSU Master's Theses

This study investigated the thermal performances of platinum particles when coupled on a steel support, under the application of a radio frequency (RF) field. Platinum nanoparticles were reduced on the surfaces of type-316 stainless steel balls, based on published methods of Pt reduction from chloroplatinic acid. Alternatively, 1wt. % Pt/Al2O3 commercial catalyst pellets were mixed with stainless steel balls and investigated for hydro-deoxygenation of pyrolysis oil from pine sawdust biomass. The catalysts were placed inside an electric insulator tube suspended within a looping copper coil connected to the induction heater, and heated at different power levels. An infrared camera was …