Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Entire DC Network

Temperature Transient Analysis For Reservoir Characterization, Yilin Mao Dec 2018

Temperature Transient Analysis For Reservoir Characterization, Yilin Mao

LSU Doctoral Dissertations

Recent developments in downhole temperature measurements open new alternatives contributing to reservoir characterization. In this dissertation, novel forward and inverse models to analyze production- and injection-induced temperature signals are developed for conventional and unconventional reservoir applications. Important limitations of the proposed models are addressed by accounting for fluid property variations and complex production strategies.

Forward modeling approaches involve making relevant assumptions that allow rigorous analytical solutions to be constructed using Laplace transform, Method of Characteristics, and control volume analysis. Our results of the analytical models are benchmarked with those from commercial numerical simulation software. Multiple possible scenarios of conventional reservoirs …


An Improved Method To Calculate Gas-Lift Valve Set Pressure And Valve Performance Curves, Khadhr A Kh Altarabulsi Dec 2018

An Improved Method To Calculate Gas-Lift Valve Set Pressure And Valve Performance Curves, Khadhr A Kh Altarabulsi

LSU Doctoral Dissertations

The main objective of this work is toimprove the accuracy on calculations of design set pressure and performance curves (sizing equations) for Gas-Lift Valves (GLVs) at high pressure (real conditions). This improved calculation method is demonstrated to have an important effect on well unloading and production operations.

The analysis of the valve design set pressure includes an experimental evaluation of the effect of internal dome volume changes on the design set pressure due to the presence of silicone and thermal effects. The evaluationis carried out for different levels of GLV silicone fill, pressures and temperatures. Silicone fills covered 7.5, 10, …


Investigation Of Flow Mechanisms In Gas-Assisted Gravity Drainage Process, Iskandar Dzulkarnain Aug 2018

Investigation Of Flow Mechanisms In Gas-Assisted Gravity Drainage Process, Iskandar Dzulkarnain

LSU Doctoral Dissertations

In this study we investigate displacement mechanism for oil recovered using Gas- Assisted Gravity Drainage (GAGD) method. For a typical oil recovery under gravity drainage, the recovery profile can be characterized by an initial bulk flow which occurs rapidly and a later film flow that extends for a longer duration. It is the latter period where film spreading, the ability of oil to spread above water in the presence of gas, is identified as the displacement mechanism responsible for recovering the remaining oil in gravity drainage process. Literature survey indicates that mathematical models for gravity drainage do not account for …


Investigation Of Flow Mechanisms In Gas-Assisted Gravity Drainage Process, Iskandar Dzulkarnain Aug 2018

Investigation Of Flow Mechanisms In Gas-Assisted Gravity Drainage Process, Iskandar Dzulkarnain

LSU Doctoral Dissertations

In this study we investigate displacement mechanism for oil recovered using Gas- Assisted Gravity Drainage (GAGD) method. For a typical oil recovery under gravity drainage, the recovery profile can be characterized by an initial bulk flow which occurs rapidly and a later film flow that extends for a longer duration. It is the latter period where film spreading, the ability of oil to spread above water in the presence of gas, is identified as the displacement mechanism responsible for recovering the remaining oil in gravity drainage process. Literature survey indicates that mathematical models for gravity drainage do not account for …


Experimental And Numerical Investigation Of Liquid-Assisted Gas-Lift Unloading, Renato Peixoto Coutinho Jun 2018

Experimental And Numerical Investigation Of Liquid-Assisted Gas-Lift Unloading, Renato Peixoto Coutinho

LSU Doctoral Dissertations

The case for a unique form of gas-lift unloading, termed “Liquid-Assisted Gas-Lift (LAGL),” is presented. This work demonstrates that the injection of a gas-liquid mixture allows transport of gas to a deep injection point utilizing injection pressure considerably lower than single-phase gas injection. The LAGL is demonstrated in a 2,880 ft deep test well. The test well is kicked-off using an injection pressure that would normally be lower than the pressure for single-point single-phase gas injection at this depth. Experimental results indicate that the LAGL can lower the injection pressure by up to 75%.

This work breaks the LAGL system …


Mobility Of Nano-Particles In Rock Based Micro-Models, Jagannath Upadhyay Apr 2018

Mobility Of Nano-Particles In Rock Based Micro-Models, Jagannath Upadhyay

LSU Doctoral Dissertations

A confocal micro-particle image velocimetry (C-μPIV) technique along with associated post-processing algorithms is detailed for obtaining three dimensional distributions of nano-particle velocity and concentrations at select locations of the 2.5D (pseudo 3D) Poly(methyl methacrylate) (PMMA) and ceramic micro-model. The designed and fabricated 2.5D micro-model incorporates microchannel networks with 3D wall structures with one at observation wall which resembles fourteen morphological and flow parameters to those of fully 3D actual reservoir rock (Boise Sandstone) at resolutions of 5 and 10 μm in depth and 5 and 25 μm on plane. In addition, an in-situ, non-destructive method for measuring the geometry of …


Image-Based Modeling Of Flow Through Porous Media: Development Of Multiscale Techniques For The Pore Level, Timothy Wayne Thibodeaux Jan 2018

Image-Based Modeling Of Flow Through Porous Media: Development Of Multiscale Techniques For The Pore Level, Timothy Wayne Thibodeaux

LSU Doctoral Dissertations

Increasingly, imaging technology allows porous media problems to be modeled at microscopic and sub-microscopic levels with finer resolution. However, the physical domain size required to be representative of the media prohibits comprehensive micro-scale simulation. A hybrid or multiscale approach is necessary to overcome this challenge. In this work, a technique was developed for determining the characteristic scales of porous materials, and a multiscale modeling methodology was developed to better understand the interaction/dependence of phenomena occurring at different microscopic scales. The multiscale method couples microscopic simulations at the pore and sub-pore scales. Network modeling is a common pore-scale technique which employs …